International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com Volume 3, Issue 4 (July-August 2015), PP. 87-96 COUPLED FIXED POINT THEOREMS FOR - CONTRACTIVE TYPE MAPPINGS IN PARTIALLY ORDERED PARTIAL B - METRIC SPACES K. P. R. Sastry1, K. K. M. Sarma2, Ch. Srinivasa Rao3, Vedula Perraju4 1 Tamil Street, Chinna Waltair, Visakhapatnam-530 017, India. Professor, Department of Mathematics, Andhra University, Visakhapatnam-530 003, India. 3, 4 Associate Professor, Department of Mathematics, Mrs.A.V.N. College, Visakhapatnam - 530 001, India [email protected], [email protected], [email protected], [email protected] 2 Abstract— Sastry et.al.[28] used the concept of contraction on a complete partially ordered partial b - metric space to study the existence and uniqueness of coupled fixed points for nonlinear contractive mappings controlled by a generalized contractive type condition. In this connection, an open problem is posed. In this paper, we partially answer the open problem in the affirmative. Still the open problem awaits complete answer. Supporting example is also provided. Index Terms—Component, formatting, style, styling, insert. Coupled fixed point, contractive mappings, mixed monotone property, admissible, partial b - metric, complete partially ordered partial b - metric space. I. INTRODUCTION Most of the fixed point theorems in nonlinear analysis usually start with Banach [7] contraction principle. A huge amount of literature is witnessed on applications, generalizations and extensions of this principle carried out by several authors in different directions like weakening the hypothesis and considering different mappings. Fixed point theory is an essential tool in the study of various varieties of problems in control theory, economic theory, nonlinear analysis and global analysis. But all the generalizations may not be from this principle. In 1989, Bakktin [6] introduced the concept of a b - metric space as a generalization of a metric space. In 1993, Czerwik[9] extended many results related to the b - metric space. In 1994, Matthews [17] introduced the concept of partial metric space in which the self distance of any point of space may not be zero. In 1996, O'Neill [26] generalized the concept of partial metric space by admitting negative distances. In 2013, Shukla [32] generalized both the concepts of b - metric and partial metric space by introducing the notation of partial b - metric spaces. Many authors recently studied the existence of fixed points of self maps in different types of metric spaces [14,33,20,30,35]. Some authors [4,18,22,28,29] obtained some fixed point theorems in b metric spaces. After that some authors started to prove ~ versions of certain fixed point theorems in different types of metric spaces [3,14]. Recently Samet et.al [27] and Jalal Hassanzadeasl [12] obtained fixed point theorems for contractive mappings. Mustafa [22] gave a generalization of Banach contraction principle in complete ordered partial b - metric space by introducing the notion of a generalized weakly contractive mapping. Bhaskar and Lakshmikantham [5] introduced the notation of mixed monotone property and proved coupled fixed point theorems. In 2012, Mohammad Mursaleen et.al [19] proved coupled fixed point theorems for - contractive type mappings in partially ordered metric spaces. Sastry et.al.[28] discussed about contraction on a complete partially ordered partial metric space to study the existence and uniqueness of coupled fixed points and posed an open problem to discuss the same on a complete partially ordered partial b- metric space. II. TYPE STYLE AND FONTS In this paper we take up this open problem of Sastry et.al.[28] to study the existence and uniqueness of coupled fixed points for contractive mappings controlled by a generalized contractive type condition on a complete partially ordered partial b- metric space under - contraction for s 1 and gave a partial answer for this problem. In fact, we show that coupled fixed point theorems on a complete partially ordered partial b - metric space with coefficient of partial b metric space s 1 by using mixed monotone property under - contraction. A supporting example is also given. Further an open problem is also given at the end of this paper. Definition 1.1.(H.Aydi et al [4]) Let X be a non empty set and let s 1 be a given real number. A function d : X X [0, ) is called a b - metric if for all x, y, z X the following conditions are satisfied. (i) d ( x, y) 0 if and only if x y . (ii) d ( x, y) d ( y, x) (iii) d ( x, y ) s{d ( x, z ) d ( z, y)} Definition 1.2. (S.G.Matthews [17]) Let X be a non empty set. A function p : X X [0, ) is called a partial metric, if for all x, y, z X the following conditions are satisfied. (i) x y if and only if p( x, x) = p( x, y) = p( y, y) . p( x, x) p( x, y) (iii) p( x, y) p( y, x) (iv) p( x, y ) p( x, z ) + p( z, y) - p( z, z ) The pair ( X , p) is called a partial metric space. (ii) Shukla [32] introduced the notation of a partial b - metric space as follows. 87 | P a g e International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com Volume 3, Issue 4 (July-August 2015), PP. 87-96 Definition 1.3.(S.Shukla[32]) Let X be a non empty set and let s 1 be a given real number. A function p : X X [0, ) is called a partial b - metric if for all x, y, z X the following conditions are satisfied. (i) x y if and only if p( x, x) = p( x, y ) = p( y, y) (ii) p( x, x) p( x, y ) (iii) p( x, y ) = p( y, x) (iv) p( x, y ) s{ p( x, z ) p( z, y)} - p( z, z ) The pair ( X , p) is called a partial b - metric space. The number s 1 is called a coefficient of ( X , p) . We note that if s 1 , we get definition 1.2 Definition 1.4. A sequence {xn } in a partial b - metric space ( X , p) is said to be: (i) convergent to a point x X if lim p( xn , x) = n p( x, x) (ii) a Cauchy sequence if lim p( xn , xm ) exists and is n , m finite (iii) a partial b - metric space ( X , p) is said to be complete if every Cauchy sequence {xn } in X converges to a point x X such that lim p( xn , xm ) = lim p( xn , x) = p( x, x) . n n , m Definition 1.5.(E.Karapinar and B.Samet [15]) Let a partially ordered set. A sequence non decreasing, if ( X , ) be {xn } X is said to be xn xn1 n N In Sastry et.al[28], the notion of a partially ordered partial metric space is introduced. Definition 1.6.(Z.Mustafa[20]) A triple ( X , , p) is called Definition 1.9.( T.G.Bhaskar and V.Lakshmikantham [5] ) An element ( x, y) X X is said to be a coupled fixed point of the mapping F : X X X if F ( x, y) x and F ( y, x) y ( X , p) be a partial b - metric space, : X X [0, ) and T : X X be a given mappings. We say that T is admissible if x, y X , ( x, y) 1 implies that (Tx, Ty) 1 . Also we say that T is L - admissible, or Definition 2.0.(Aiman Mukheimer[18]) Let R - admissible if x, y X , ( x, y) 1 implies that (Tx, y) 1 or ( x, Ty) 1 respectively. Definition 2.1.(Mohammad Murasaleen mappings. Then Using the definition 1.6, the following theorems are established in Sastry et.al.[28]. Theorem 2.2.(Sastry et.al.[28] Theorem 2.7)Let ( X , , p) be a complete partially ordered partial metric space. Let F : X X X be a mapping having the mixed monotone X .Suppose and : X 2 X 2 [0, ) such that for x, y, u, v X , the following holds : (( x, y),(u, v)) p( F ( x, y), F (u, v)) (2.2.1) (max{ p( x, u), p( y, v)}) x u and y v property of Suppose that (i) F is - admissible. (ii)there exists x0 , y0 X such (( x0 , y0 ),( F ( x0 , y0 ), F ( y0 , x0 ))) 1 , (( y0 , x0 ),( F ( y0 , x0 ), F ( x0 , y0 ))) 1 definiteness sake Sastry et.al[28](Definition 2.1) adopting the definition 1.2 for partial metric and defined the triple ( X , , p) as partially ordered partial metric space. A and partially ordered partial metric space ( X , , p) is said to be complete if every Cauchy sequence is convergent. Definition 1.7.(Mohammad Mursaleen. et. al. [19] ) Define = { / :[0, ) [0, ) is non-decreasing and (1.7.1)} lim (r ) t t 0 satisfies r t 1.7.1) Definition 1.8.(T.G.Bhaskar and V.Lakshmikantham [5]) Let ( X , ) be a partially ordered set and F : X X X be a mapping. Then F is said to have the mixed monotone property if F ( x, y) is monotone non - decreasing in x and y ; i.e., for any x, y X , x1 , x2 X , x1 x2 F ( x1 , y) F ( x2 , y) (1.8.1) and y1 , y2 X y1 y2 F ( x, y1 ) F ( x, y2 ) (1.8.2) is monotone non - increasing in [19]) 2 ( X , ) is a partially ordered set and p is a partial b - metric on X . For an ordered partial b - metric space if et.al. : X X [0, ) be two F is said to be - admissible if , {( x, y),(u, v)} 1 ({F ( x, y), F ( y, x)},{F (u, v), F (v, u)}) 1 for all x, y, u, v X Let F : X X X and 2 that x0 F ( x0 , y0 ) and y0 F ( y0 , x0 ) . (iii) F is continuous Then F has a coupled fixed point, that is x, y X such that F ( x, y) x and F ( y, x) y Theorem 2.3.(Sastry et.al.[28] Theorem 2.8) Let ( X , , p) be a complete partially ordered partial metric space. Let F : X X X be a mapping having the mixed monotone property of Suppose and X. : X 2 X 2 [0, ) such that for x, y, u, v X , the following holds : (( x, y),(u, v)) p( F ( x, y), F (u, v)) (max{ p( x, u), p( y, v)}) x u, y v . (2.3.1) Suppose that (i) F is - admissible. 88 | P a g e International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com Volume 3, Issue 4 (July-August 2015), PP. 87-96 (ii) there exist x0 , y0 X such , (( y0 , x0 ),( F ( y0 , x0 ), F ( x0 , y0 ))) 1 .and that (( x0 , y0 ),( F ( x0 , y0 ), F ( y0 , x0 ))) 1 , x0 F ( x0 , y0 ) and y0 F ( y0 , x0 ) . (( y0 , x0 ),( F ( y0 , x0 ), F ( x0 , y0 ))) 1. (iii) F is continuous (iv)If sequence {xn } is non-increasing and sequence and x0 F ( x0 , y0 ) and y0 F ( y0 , x0 ) {xn } is a non-decreasing sequence and { yn } is a nonincreasing sequence, then lim xn x xn x and lim (iii)If n n yn y yn y (iv) Further If (( xn , yn ), ( xn1 , yn1 )) 1 and then F has a coupled fixed point, that is x, y X such that F ( x, y) x and F ( y, x) y . Theorem 2.4. (Sastry et.al.[28] Theorem 2.9)Let ( X , , p) be a complete partially ordered partial metric space. Let F : X X X be a mapping having the mixed monotone property of Suppose and X. : X X [0, ) x, y, u, v X , the such that for following holds : (( x, y),(u, v)) p( F ( x, y), F (u, v)) (max{ p( x, u), p( y, v)}) x u and y v . Suppose that (i) F is - admissible. x0 , y0 X (ii) there exist (1.14.1) such that (( x0 , y0 ),( F ( x0 , y0 ), F ( y0 , x0 ))) 1 , (( y0 , x0 ),( F ( y0 , x0 ), F ( x0 , y0 ))) 1 lim yn y yn y ; n x0 F ( x0 , y0 ) and y0 F ( y0 , x0 ) . ( x, y) and ( s, t ) in X X , there exists (u, v) such that (( x, y),(u, v)) 1 and ((s, t ),(u, v)) 1. Then F has a unique coupled fixed point. et.al.[28] Theorem 2.10)Let ( X , , p) be a complete partially ordered partial metric space. Let F : X X X be a mapping having the mixed monotone property of X . Suppose and : X 2 X 2 [0, ) such that for x, y, u, v X , the following holds: (( x, y),(u, v)) p( F ( x, y), F (u, v)) (max{ p( x, u), p( y, v)}) x u and y v . Suppose that (i) F is - admissible. x0 , y0 X (ii) there exist (( x0 , y0 ),( F ( x0 , y0 ), F ( y0 , x0 ))) 1 (( xn , yn ),( xn1 , yn1 )) 1 and F has a coupled fixed point, that is x, y X such that F ( x, y) x and F ( y, x) y . In this connection, the following open problem is posed in Sastry et.al.[28]. Are theorems 2.2, 2.3, 2.4, 2.5 hold good in partially ordered partial b - metric spaces ( s 1 )? In the next section we partially answer the open problem by imposing a link between coefficient s>1of a partially ordered partial b - metric space ( X , , p) and the function . As theorems 1.12, 1.13, 1.14, 1.15 proved when s 1 in Sastry et.al [28], we assume, without laws of generality, that s>1. Main Result In this section we continue our study of the open problem of Sastry et.al.[28] under contractions. We study the existence and uniqueness of coupled fixed point theorems by considering maps on complete partially ordered partial b - metric space under - contraction. This paper is a sequel of Sastry et.al.[28]. We begin this section with the following definition. Definition 2.6.(Sastry et.al.[29]) Suppose ( X , ) is a is a partial b metric p asin definition1.3with coefficient s 1 . Then we say that the triplet ( X , , p) is a partially ordered partial b - (iii) F is continuous Suppose for every 2.5.(Sastry If (( yn , xn ),( yn1 , xn1 )) 1 n ,then (( xn , yn ),( x, y)) 1 and (( yn , xn ),( y, x)) 1 partially and Theorem xn x lim Then Then 2 then n Further (( yn , xn ),( yn1 , xn1 )) 1 n , (( xn , yn ),( x, y)) 1 and (( yn , xn ),( y, x)) 1 2 non-decreasing { yn } is xn x and (2.5.1) such that ordered set and metric space. A partially ordered partial b - metric space ( X , , p) is said to be complete if every Cauchy sequence in X is convergent. ( X , , p) be a partially ordered partial b metric space, with coefficient s 1 . Define s = { / :[0, ) [0, ) is non-decreasing and satisfies (2.7.1)} t lim (r ) t 0 (2.7.1) r t s We observe that 1 = . In what follows, we assume, unless otherwise specified, that ( X , , p) is a partially Definition 2.7.Let ordered partial b - metric space with s > 1 . Now we state the following useful lemmas, whose proofs can be found in Sastry. et. al [29]. Lemma 2.8.Let ( X , , p) be a complete partially ordered partial b - metric space. 89 | P a g e International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com Volume 3, Issue 4 (July-August 2015), PP. 87-96 {xn } be a sequence in X such that lim p( xn , xn1 ) 0 . Suppose lim xn x and lim Let n n n xn y Then lim p( xn , x) = lim p( xn , y ) = p( x, y) n n Now we state our first main result: Theorem 3.1.Let ( X , , p) be a complete partially ordered partial b - metric space with coefficient $ s > 1 $. Let F : X X X be a mapping having the mixed monotone X. : X 2 X 2 [0, ) Suppose s and such that for x, y, u, v X , the following holds : (( x, y),(u, v)) p( F ( x, y), F (u, v)) (max{ p( x, u), p( y, v)}) x u and y v .Suppose that (i) F is - admissible. x0 , y0 X (ii) there exist (( x0 , y0 ),( F ( x0 , y0 ), F ( y0 , x0 ))) 1 , (( y0 , x0 ),( F ( y0 , x0 ), F ( x0 , y0 ))) 1 x0 F ( x0 , y0 ) and y0 F ( y0 , x0 ) . (3.1.1) that and (iii) F is continuous Then F has a coupled fixed point, that is F ( x, y) x and F ( y, x) y x0 , y0 X Proof: Let be such x, y X such that as in (ii ) . Then (( x0 , y0 ),( F ( x0 , y0 ), F ( y0 , x0 ))) 1 , (( y0 , x0 ),( F ( y0 , x0 ), F ( x0 , y0 ))) 1, x0 F ( x0 , y0 ) and y0 F ( y0 , x0 ) . F ( x0 , y0 ) x1 and F ( y0 , x0 ) y1 . Then clearly x0 x1 and y0 y1 . Write Define x2 , y2 X as x2 F ( x1 , y1 ) xn1 F ( xn , yn ) F ( xn1 , yn ) F ( xn1 , yn1 ) xn2 and Hence sequence t t 0 and s 1 is the coefficient of ( X , p) s of property, xn1 xn 2 and yn1 yn 2 n property xn xn1 and yn yn1 . Then by mixed monotone yn1 F ( yn , xn ) F ( yn1 , xn ) F ( yn1 , xn1 ) yn2 x y Lemma 2.9. p( x, y) 0 x y n Lemma3.0. If s then (i) lim (t ) 0 t 0 and hence (ii) (t ) Suppose and y2 F ( y1 , x1 ) . Now from (ii) , (( x0 , y0 ),( x1 , y1 )) 1 (( F ( x0 , y0 ), F ( y0 , x0 )),( F ( x1, y1 ), F ( y1, x1 ))) 1 (( x1 , y1 ),( x2 , y2 )) 1 By mixed monotone property x0 x1 and y0 y1 F ( x0 , y0 ) F ( x1 , y0 ) F ( x1, y1 ) and F ( y0 , x0 ) F ( y1 , x0 ) F ( y1, x1 ) y1 y2 . Inductively, define x1 x2 and xn1 F ( xn , yn ) and yn1 F ( yn , xn ) , n 0,1, 2,... {xn } is non-decreasing and sequence { yn } is non-increasing. Suppose ( xn , yn ) ( xn1 , yn1 ) for some Then n. xn xn1 F ( xn , yn ) and yn yn1 F ( yn , xn ) F has a coupled fixed point. In fact ( xn , yn ) is a coupled fixed point. Hence we may assume that ( xn1 , yn1 ) ( xn , yn ) n 0 . F is - admissible, we have (( x0 , y0 ),( x1 , y1 )) 1 (( F ( x0 , y0 ), F ( y0 , x0 )),( F ( x1 , y1 ), F ( y1, x1 ))) 1 (( x1 , y1 ),( x2 , y2 )) 1 By Mathematical Induction (3.1.2) (( xn , yn ),( xn1 , yn1 )) 1 n 0 Similarly (( yn , xn ),( yn1 , xn 1 )) 1 n 0 (3.1.3) Now p ( xn , xn1 ) p ( F ( xn1 , yn1 ), F ( xn , yn )) (( xn1 , yn1 ),( xn , yn )) p ( F ( xn1 , yn1 ), F ( xn , yn )) ( max { p ( xn1 , xn ), p ( yn1 , yn )}) Similarly p ( yn , yn1 ) ( max { p ( yn1 , yn ), p ( xn1, xn )}) max { p ( xn , xn1 ), p ( yn , yn1 )} ( max { p ( xn1 , xn ), p ( yn1, yn )}) 1 n (n 1 ) n 1 ( by (ii) of lemma 3.0 ) s where n = max { p ( xn , xn1 ), p ( yn , yn1 )} Since n (n1 ) 2 (n2 ) ... n (0 ) where 0 $=$ p ( x0 , x1 ) 0 {n } sequence is decreasing and lim n lim n (0 ) 0 ( by (i ) lemma 3.0) n n sequence {n } is convergent and converges to 0 lim n 0 n lim max { p ( xn , xn1 ), p ( yn , yn1 )} 0 (3.1.4) n lim p ( xn , xn1 ) 0 n and lim p ( yn , yn1 ) 0 (3.1.5) n Let us show that the sequences {xn } and { yn } are Cauchy sequences. 90 | P a g e International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com Volume 3, Issue 4 (July-August 2015), PP. 87-96 If possible let {xn } or { yn } fails to be a Cauchy sequence, s max { p ( xmk 1 , xmk ), p ( ymk 1 , ymk )} ò Allowing k and using (3.1.4) ò max { p ( xmk , xnk ), p ( ymk , ynk )} ò Then either lim p ( xm , xn ) 0 or lim p ( ym , yn ) 0 m , n m , n max{ lim p ( xm , xn ) , lim p ( ym , yn )} 0 m , n m , n ò 0 for which we can find sub sequences {mk } and {nk } of positive integers with max { p ( xmk , xnk ), p ( ymk , ynk )} ò . ò max { p ( xmk , xnk ), p ( ymk , ynk )} nk mk k å l i m(m a x { p m(k x k , x ) ,pmk y( nk equal to ò Therefore (I) follows. Again we have p ( xmk , xnk ) nk y, exists) }and ) s( p ( xmk , xnk 1 ) $+$ nk to be the smallest positive integer and {mk } {nk } å satisfy max { p ( xmk , xnk ), p ( ymk , ynk )} ò and s(s( p ( xmk , xmk 1 ) + p ( xmk 1 , xnk 1 )) - max p ( xmk , xnk 1 ), p ( ymk , ynk 1 ) } ò Now we explore the properties of the sequences s 2 p ( xmk , xmk 1 ) + s 2 p ( xmk 1 , xnk 1 ) + sp ( xnk 1 , xnk ) Further we can choose p ( xnk 1 , xnk )) p ( xmk 1 , xmk 1 )) + sp ( xnk 1 , xnk ) Similarly which use in thesequ el. I. lim (max { p ( xmk , xnk ), p ( ymk , ynk )}) ò p ( ymk , ynk ) s 2 p ( ymk , ymk 1 ) + s 2 p ( ymk 1 , ynk 1 ) $+$ sp ( ynk 1 , ynk ) k II. ò ò max { p ( xmk , xnk ), p ( ymk , ynk )} s 2 lim inf (max { p ( xmk 1 , xnk 1 ), p ( ymk 1 , ynk 1 )}) s 2 max { p ( xmk , xmk 1 ), p ( ymk , ymk 1 )} s 2 lim sup(max { p ( xmk 1 , xnk 1 ), p ( ymk 1 , ynk 1 )}) s 2 max { p ( xmk 1 , xnk 1 ), p ( ymk 1 , ynk 1 )} k 0 k s max { p ( xnk , xnk 1 ), p ( ynk , ynk 1 )} Allowing k and using (3.1.4) 2 We have ò s lim inf sò III.ò s lim inf (max { p ( xmk , xnk 1 ), p ( ymk , ynk 1 )}) 3 k k (max { p ( xmk 1 , xnk 1 ), p ( ymk 1 , ynk 1 )}) s lim sup(max { p ( xmk , xnk 1 ), p ( ymk , ynk 1 )}) On the other hand, k sò Now p ( xmk 1 , xnk 1 ) s( p ( xmk 1 , xmk ) + p ( xmk , xnk 1 )) - p ( xmk , xnk ) p ( xmk 1 , xnk ) p ( F ( xmk , ymk ), F ( xnk 1 , ynk 1 )) (( xmk , ymk ),( xnk 1 , ynk 1 )) s( p ( xmk 1 , xmk ) $+$ p ( xmk , xnk 1 )) p ( F ( xmk , ymk ), F ( xnk 1 , ynk 1 )) sp ( xmk 1 , xmk ) + sò (max{ p( xmk , xnk 1 ), p( ymk , ynk 1 ) }) Similarly (3.1.6) p ( ymk 1 , ynk ) (max{ p( ym , yn 1 ), p( xm , xn 1 ) } k k k (3.1.7) k from (3.1.6) and (3.1.7) ò max{ p ( xmk 1 , xnk ), p ( ymk 1 , ynk )} we have k k ò s Now, k k (3.1.8) p ( xmk , xnk ) s( p ( xmk , xmk 1 ) p ( xmk 1 , xnk )) - p ( xmk 1 , xmk 1 ) s( p ( xmk , xmk 1 ) + p ( xmk 1 , xnk )) sp ( xmk , xmk 1 ) + ò ( by (3.1.8)) Similarly, p ( ymk , ynk ) sp ( ymk 1 , ymk ) + ò ( by (3.1.8)) Similarly p ( ymk 1 , ynk 1 ) sp ( ymk 1 , ymk ) + sò max { p ( xmk 1 , xnk 1 ), p ( ymk 1 , ynk 1 )} s max { p ( xmk 1 , xmk ), p ( ymk 1 , ymk )} + sò (3.1.10) Allowing k and using (3.1.4) lim sup(max { p ( xmk 1 , xnk 1 ), p ( ymk 1 , ynk 1 )}) k (max{ p( xm , xn 1 ), p( ym , yn 1 ) }) (ò) < (3.1.9) + (3.1.1) sò From (3.1.9) and (3.1.11) ò s 2 lim inf (max { p ( xmk 1 , xnk 1 ), p ( ymk 1 , ynk 1 )}) k 0 s lim sup(max { p ( xmk 1 , xnk 1 ), p ( ymk 1 , ynk 1 )}) 2 k sò 3 Therefore ( II ) follows. Finally we have , p ( xmk , xnk ) s( p ( xmk , xnk 1 ) + p ( xnk 1 , xnk )) 91 | P a g e International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com Volume 3, Issue 4 (July-August 2015), PP. 87-96 sò + sp ( xnk 1 , xnk )) tk tk s sò ò lim (tk ) lim (tk ) ò , k tk ( sò) s From (3.1.14) again, Similarly p ( ymk , ynk ) s( p ( ymk , ynk 1 ) + p ( ynk 1 , ynk )) sò + sp ( ynk 1 , ynk )) ò max { p ( xmk , xnk ), p ( ymk , ynk )} ò (tk ) is a contradiction. sequences {xn },{ yn } are Cauchy sequences. smax { p ( xmk , xnk 1 ), p ( ymk , ynk 1 )} by(3.1.4), lim p ( xm , xn ) 0 m , n lim p ( ym , yn ) 0 smax { p ( xnk 1 , xnk ), p ( ynk 1 , ynk )} and sò s max { p ( xnk 1 , xnk ), p ( ynk 1 , ynk )} Allowing k and using (3.1.4) ò s lim inf (max { p ( xmk , xnk 1 ), p ( ymk , ynk 1 )}) {xn } x and { yn } y as n lim p ( xn , x) 0 p ( x, x) s lim sup(max { p ( xmk , xnk 1 ), p ( ymk , ynk 1 )}) We have m , n Let sequence n and lim p ( yn , y) 0 p ( y, y) n k k Now sò xn1 F ( xn , yn ) and yn1 F ( yn , xn ) lim xn1 lim F ( xn , yn ) F ( x, y) n and also Therefore (III) follows. Now from p( xmk , xnk ) n lim xn1 x n p ( F ( xmk 1 , ymk 1 ), F ( xnk 1 , ynk 1 )) By lemma 2.8 and (3.1.4), we have x F ( x, y) Similarly y lim yn1 lim F ( yn , xn ) F ( y, x) (( xmk 1 , ymk 1 ),( xnk 1 , ynk 1 )) x and y are coupled fixed points of F in X . (3.1.1) n n p ( F ( xmk 1 , ymk 1 ), F ( xnk 1 , ynk 1 )) (max{ p( xmk 1 , xnk 1 ), p( ymk 1 , ynk 1 ) }) (3.1.12) Similarly p ( ymk , ynk ) p ( F ( ymk 1 , xmk 1 ), F ( ynk 1 , xnk 1 )) property p ( F ( ymk 1 , xmk 1 ), F ( ynk 1 , xnk 1 )) (( ym 1 , xm 1 ),( yn 1 , xn 1 )) (max{ p( ym 1 , yn 1 ), p( xm 1 , xn 1 ) } k k k k k k from (3.1.10) and (3.1.11) ò max{ p ( xmk , xnk ), p ( ymk , ynk )} (3.1.13) we have every But by (II), lim inf (tk ) lim sup (tk ) sò k Hence k sò lim inf (tk ) lim sup (tk ) sò k k t lim (tk ) sò lim ( k ) ò k k s t Hence from (3.1.14), ò lim (tk ) lim ( k ) ò k k s lim (tk ) ò k such that for and x, y, u, v X , the (( x, y),(u, v)) p( F ( x, y), F (u, v)) (max{ p( x, u), p( y, v)}) x u, y v (3.2.1) Suppose that (i) F is - admissible. (ii) 1 (3.1.14) (tk ) tk s where tk max{ p( xmk 1 , xnk 1 ), p( ymk 1 , ynk 1 ) for s Suppose following holds : (max{ p( xmk 1 , xnk 1 ), p( ymk 1 , ynk 1 ) sò tk X. of : X 2 X 2 [0, ) k k Now we state and prove our second main result: Theorem 3.2. Let ( X , , p) be a complete partially ordered partial b - metric space with coefficient s > 1 . Let F : X X X be a mapping having the mixed monotone there x0 , y0 X exist such that (( x0 , y0 ),( F ( x0 , y0 ), F ( y0 , x0 ))) 1 , (( y0 , x0 ),( F ( y0 , x0 ), F ( x0 , y0 ))) 1. k and x0 F ( x0 , y0 ) and y0 F ( y0 , x0 ) (iii)If {xn } is a non-decreasing sequence and { yn } is a nonincreasing sequence, then lim xn x xn x and n lim yn y yn y n N n (iv) Further If (( xn , yn ),( xn1 , yn1 )) 1 (( yn , xn ),( yn1 , xn1 )) 1 n , (( xn , yn ),( x, y)) 1 and (( yn , xn ),( y, x)) 1 and then 92 | P a g e International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com Volume 3, Issue 4 (July-August 2015), PP. 87-96 F has a coupled fixed point, that is~ x, y X such that F ( x, y) x and F ( y, x) y . Proof: Using (ii ) , define the sequences {xn } and { yn } as Then in Theorem 3.1. Then it can be shown, as in Theorem 3.1, sequences {xn } and { yn } are Cauchy sequences. Suppose lim xn x and lim yn y n n {xn } is non-decreasing and sequence { yn } is non-increasing, by (iii ) , lim xn x xn x and Since sequence n lim yn y yn y n and also from (3.1.2) and (3.1.3) of Theorem 3.1 (( xn , yn ),( x, y)) 1 and (( yn , xn ),( y, x)) 1 p( xn1 , F ( x, y)) = p( F ( xn , yn ), F ( x, y )) (( xn , yn ), ( x, y )) p( F ( xn , yn ), F ( x, y)) (max{( p( xn , x), p( yn , y ))}) xn x and yn y Similarly p( yn1 , F ( y, x)) (max{( p( yn , y), p( xn , x))}) xn x and yn y max { p( xn1 , F ( x, y)), p( yn1 , F ( y, x))} (max{( p( xn , x), p( yn , y))}) lim max { p( xn1 , F ( x, y)), p( yn1 , F ( y, x))} n lim (max{( p( xn , x), p( yn , y))}) n lim max{( p( xn , x), p( yn , y))}) 0 (from (3.1.5) of n theorem 3.1 ) lim p( xn1 , F ( x, y)) 0 and lim p( yn1 , F ( y, x)) 0 n n lim xn1 F ( x, y)) and lim yn1 F ( y, x)) n n {xn } and sequence { yn } are Cauchy sequences and lim xn x ; Since sequence n lim yn y lim xn1 x and lim yn1 y n n n p( x, F ( x, y)) s( p( x, xn1 ) + p( xn1 , F ( x, y))) - p( xn1 , xn1 ) p( x, F ( x, y)) 0 and similarly p( y, F ( y, x)) 0 Hence by lemma 2.9 , x F ( x, y) and y F ( y, x) F has coupled fixed point in X . Further Now we state and prove our third main result. In this result, we obtain a sufficient condition which assumes the uniqueness of coupled fixed point. Theorem 3.3. Let ( X , , p) be a complete partially ordered partial b - metric space with coefficient S > 1. Let F : X X X be a mapping having the mixed monotone property of X. : X 2 X 2 [0, ) s Suppose such that for and x, y, u, v X , the following holds : (( x, y),(u, v)) p( F ( x, y), F (u, v)) (max{ p( x, u), p( y, v)}) x u and y v . Suppose that (i) F is - admissible. (ii) there exist x0 , y0 X (3.3.1) such that (( x0 , y0 ),( F ( x0 , y0 ), F ( y0 , x0 ))) 1 , (( y0 , x0 ),( F ( y0 , x0 ), F ( x0 , y0 ))) 1and x0 F ( x0 , y0 ) and y0 F ( y0 , x0 ) . ( x, y) and ( w, t ) in X X , there exists (u, v) such that (( x, y),(u, v)) 1 and (( w, t ),(u, v)) 1 . Then F has a unique coupled fixed point. (iii) F is continuous Suppose for every Proof: We have by theorem 3.1 the set of coupled fixed points is non-empty. Suppose ( x, y ) and ( w, t ) are coupled points of the mapping F : X X X , that is x F ( x, y) , y F ( y, x) and w F (w, t ) , t F (t , w) . By assumption, there exists (u, v) in X X such that (u, v) is comparable to ( x, y ) and ( w, t ) . Let u u0 and v v0 . Write u1 F (u0 , v0 ) and v1 F (v0 , u0 ) . Thus inductively {un } and {vn } as un1 F (un , vn ) and vn1 F (vn , un ) Since (u, v) is comparable to therefore ( x, y) , x u u0 F ( x, y) F (u0 , y) F (u0 , v0 ) ( y v0 ) x F (u0 , v0 ) u1 and similarly y v1 x u1 and y v1 and by induction x un and y vn n 1. Since u u0 and v v0 , we get (( x, y),(u0 , v0 )) 1 (( F ( x, y), F ( y, x)),( F (u0 , v0 ), F (v0 , u0 ))) 1 (( x, y),(u1 , v1 )) 1 By mathematical induction, we obtain (( x, y),(un , vn )) 1 n 1 (3.3.2) Similarly (( y, x),(vn , un )) 1 n 1 (3.3.3) from (3.3.1),(3.3.2),(3.3.3) we have p ( x, un1 ) p ( F ( x, y), F (un , vn )) (( x, y),(un , vn )) p ( F ( x, y), F (un , vn )) (3.3.4) (max{( x, un ),( y, vn )}) we can define sequences Similarly p ( y, vn1 ) (max{( y, vn ),( x, un )}) from (3.3.4),(3.3.5) we have (3.3.5) 93 | P a g e International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com Volume 3, Issue 4 (July-August 2015), PP. 87-96 max{ p ( x, un1 ), p ( y, vn1 )} {xn } is non-increasing and sequence { yn } is non-decreasing then lim xn x xn x and lim (iv)If sequence (max{( x, un ),( y, vn )}) n 1 ( n ) where n 1 = max { p ( x, un1 ), p ( y, vn1 )} n 1 ( n ) where 0 sequence = n 1 ( 0 ) max { p ( x, u0 ), p ( y, v0 )} n1 lim n (n1 ) ... 2 n 1 {n } is decreasing lim and n (0 ) 0 (by (i ) lemma 3.0) sequence {n } is convergent and converges to 0 lim n1 0 lim max { p ( x, un1 ), p ( y, vn1 )} n n (3.3.6) 0 lim { p ( x, un1 )} 0 and lim { p ( y, vn1 )} 0 s2 lim { p (w, un1 )} 0 and lim { p (t , vn1 )} 0 Define F : X X X by n 1 F ( x, y) x(1 y ) if x, y X 2 2 2 Define : X X [0, ) by 1 if x y, u v (( x, y), (u, v))) 0 otherwise t t t Define (t ) (t ) (t ) 2 3 s Now p ( x, w) s( p ( x, un1 ) p (un1 , w)) p (un1 , un1 ) sp ( x, un1 ) sp (un1 , w) p( x, w) s lim p ( x, un1 ) + s lim p (un1 , w) 0 n n p ( x, w) 0 Similarly p ( y, t ) 0 Hence by lemma 2.9, x w and y t F has unique coupled fixed point. Without and : X 2 X 2 [0, ) such that for x, y, u, v X , the following holds : (( x, y),(u, v)) p( F ( x, y), F (u, v)) (max{ p( x, u), p( y, v)}) x u and y v . Suppose that (i) F is - admissible. x0 , y0 X (ii) there exist that (( x0 , y0 ),( F ( x0 , y0 ), F ( y0 , x0 ))) 1 , (( y0 , x0 ),( F ( y0 , x0 ), F ( x0 , y0 ))) 1 .and x0 F ( x0 , y0 ) and y0 F ( y0 , x0 ) . (iii) F is continuous ( Or ) of generality, we may assume that p( x, y) x 2 , partial b - metric space with $ s > 1$. Let F : X X X be a mapping having the mixed monotone property of X . s loss 0 y x 1 The following theorem which is the fourth main result can be established on the lines of the proof of theorems 3.1 and 3.2 Theorem 3.4.Let ( X , , p) be a complete partially ordered Suppose Proof: follows as in the theorems 3.1 and 3.2 Now we give an example in support of theorem 3.1 3.5 Example: Let X [0,1] with usual ordering. Define is a partially ordered partial b - metric space with coefficient Similarly n yn y yn y n N ; Further If ~ and (( xn , yn ),( xn1 , yn1 )) 1 then (( yn , xn ),( yn1 , xn1 )) 1 n , (( xn , yn ),( x, y)) 1 and (( yn , xn ),( y, x)) 1 Then F has a coupled fixed point, that is x, y X such that F ( x, y) x and F ( y, x) y . p( x, y) (max{x, y})2 x, y X . Clearly, ( X , , p) n n n n (3.4.1) such p( F ( x, y), F (u, v)) = (max {F ( x, y), F (u, v)})2 1 1 2 2 = max({ x(1 y )} ,{ u (1 v)} ) 2 2 2 2 2 p( x, u) max( x , u ), p( y, v) max( y , v 2 ) , (max{ p( x, u), p( y, v)}) 1 2 2 2 2 2 2 = (max{x , u }, max{ y , v }) (max{x , u }) 3 (since x y and u v ) Now (( x, y),(u, v)) p( F ( x, y), F (u, v)) = p( F ( x, y), F (u, v)) 1 1 2 2 = max({ x(1 y )} ,{ u (1 v)} ) 2 2 1 2 2 and (max{ p( x, u), p( y, v)}) = (max{x , u }) 3 Now we show that (( x, y),(u, v))) p( F ( x, y), F (u, v)) (3.5.1) (max{ p( x, u), p( y, v)}) 94 | P a g e International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com Volume 3, Issue 4 (July-August 2015), PP. 87-96 That is, we show that 1 1 max({ x(1 y )}2 ,{ u (1 v)}2 ) 2 2 1 (max{x 2 , u 2 }) 3 (3.5.2) The following are the cases Case(1): Let 1 { x(1 y )}2 2 1 { u (1 v)}2 2 and 1 2 1 2 x u 3 3 1 1 { x(1 y )}2 x 2 (3.5.2) holds (3.5.1) holds 3 2 1 1 2 Case(2): Let { x(1 y )} { u (1 v)}2 and 2 2 1 2 1 2 u x 3 3 1 2 1 2 1 { x(1 y )}2 u (3.5.2) holds x 3 3 2 (3.10.1) holds 1 1 2 Case(3): Let { x(1 y )} { u (1 v)}2 and 2 2 1 2 1 2 x u 3 3 1 2 1 2 1 { u (1 v)}2 u x (3.5.2) holds 3 3 2 (3.5.1) holds 1 1 2 Case(4): Let { x(1 y )} { u (1 v)}2 and 2 2 1 2 1 2 u x 3 3 1 1 { u (1 v)}2 u 2 (3.5.2) holds (3.5.1) holds 3 2 Hence (( x, y),(u, v))) p( F ( x, y), F (u, v)) (max{ p( x, u), p( y, v)}) 1 (i) Let and x' F ( x, y ) x(1 y ) 2 1 y ' F ( y, x) y (1 x) 2 1 Further let and u ' F (u, v) u (1 v) 2 1 v' F (v, u ) v(1 u ) 2 ' ' ' ' ' ' ' ' Since x , y , u , v X and x y , u v (( x' , y ' ),(u ' , v' )) 1 F is - admissible. 0 x0 ,0 y0 (ii) Taking F ( x0 , y0 ) 0, F ( y0 , x0 ) 0 then (( x0 , y0 ),( F ( x0 , y0 ), F ( y0 , x0 ))) 1 and (( y0 , x0 ),( F ( y0 , x0 ), F ( x0 , y0 ))) 1 (iii) F is continuous. F satisfies the hypothesis of theorem 2.6 Now F (0,0) 0 and F (0,0) 0 Hence (0,0) is a coupled fixed point of F in X + Note It can be shown that this example also supports Theorem 3.2 . Open Problem: Are the theorems 3.1, 3.2, 3.3 and 3.4 true for partial b - metric spaces with coefficient s 1 when is defined independent of s ? III. ACKNOWLEDGEMENTS The fourth author is grateful to the management of Mrs.AVNCollege, Visakhapatnam and Mathematics Department of Andhra University for giving necessary permission and providing necessary facilities to carry on this research. REFERENCES [1] Abbas, M, Nazir, T, Radenovi´c, S: Fixed points of four maps in partially ordered metric spaces. Appl. Math. Lett. 24,1520-1526 (2011) [2] Agarwal, RP, El-Gebeily, MA, O’Regan, D: Generalized contractions in partially ordered metric spaces. Appl. Anal. 87,109-116 (2008) [3] Asl J., Rezapour S., Shahzad N., On fixed points of contractive multi functions, Fixed Point Theory and Applications 2012, 2012:212,6pp.1 [4] Aydi H.,Bota, M., Karapinar, E., Mitrovic, S., A fixed point theorem for set valued quasi-contractions in b metric spaces, Fixed Point Theory and its Applications,2012, 2012:88,8 pp 1.1 [5] Bhaskar, TG, Lakshmikantham, V: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 65, 1379-1393 (2006) [6] Bakhtin I.A., The Contraction Principle in quasimetric spaces, It. Funct. Anal., 30(1989), 26-37. 1 [7] Banach S., Sur les operations dans les ensembles abstraits et leur application oux equations integrals, Fundamenta Mathematicae, 3(1922), 133-181. 1 [8] Beg.I and Butt.A.R"Fixed point for set-valued mappings an implicit relation in partially ordered matrix spaces, Nonlinear Appl.71 (2009), no.9,3699-3704. [9] Czerwik S., Nonlinear set-valved contraction mappings in b-metric Spaces, Atti Sem. Mat. Fis. Univ. Modena, 46(1998),263-276. 1 [10] Choudhury, BS, Kundu, A: A coupled coincidence point result in partially ordered metric spaces for compatible mappings. Nonlinear Anal. 73, 2524-2531 (2010) [11] Geraghty, M: On contractive mappings. Proc. Am. Math. Soc. 40, 604-608 (1973) [12] Guo, D, Lakshmikantham, V: Coupled fixed points of nonlinear operators with applications. Nonlinear Anal. TMA 11,623-632 (1987) [13] Kadelburg.Zoran , Poom Kumam, Stojan Radenovi, and Wutiphol Sintunavarat, Common coupled fixed point theorems for Geraghty-type contraction mappings using 95 | P a g e International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com Volume 3, Issue 4 (July-August 2015), PP. 87-96 [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] monotone property,Fixed Point Theory and Applications (2015) 2015:27,pp1-14 Karapinar E., Agarwal R.P., A note on coupled fixed point theorems for Contractive-type mappings in partially ordered metric spaces, Fixed Point Theory and Applications, 2013, 2013:216, 16 pp.1 Karapinar E., Samet B., Generalized $\alpha-\psi$ contractive type mappings and related fixed point theorems with applications, abstract and Applied Analysis (2012), Art. ID 793486, 17 pp 1.7, 1.8 Luong, NV, Thuan, NX: Coupled fixed points in partially ordered metric spaces and application. Nonlinear Anal. 74,983-992 (2011) Matthews, S.G., Partal metric topology Proc. 8th Summer Conference on General Topology and Applications, Ann. Acad. N.Y., Sci., 728(1994), 183197. 1, 1.2 Mehmet K., Kiziltunc H., On Some Well Known Fixed Point Theorems in b-metric Spaces, Turkish Journal of Analysis and Number Theory, 1(2013),13-16. 1 Mohammad Murasaleen,Syed abdul mohiuddine, and Ravi P Agarwal., Coupled Fixed point theorems for contractive type mappings in partially ordered metric spaces,Fixed Point Theory and Applications 2012, 2012:228 Mohiuddine, SA, Alotaibi, A., On coupled fixed point theorems for nonlinear contractions in partially ordered G-metric spaces. Abstr. Appl. Anal. 2012, Article ID 897198 (2012) Mukheimer A., Contractive mappings in ordered partial b - metric spaces,J. Nonlinear Sci. Appl. 7(2014)m 1678-179 Mustafa Z., Roshan, J.R., Parveneh, V., Kadelburg, Z., Some common fixed point result in ordered partal bmetric spaces, Journal of Inequalities and Applications,(2013), 2013:562. 1, 1, 1, 1.5, 1.2, 1.3, 1.6, 1.1, 1.2, 1.3, 1.9 Nashine.H.K.and Altun.I ”Fixed point theorems for weakly contractive condition in ordered metric spaces Common Fixed point theorey Appl. (2011),Art.ID 132367, 20 pp Nashine. H.K and Altun.I "A common Fixed point theorem on ordered metric spaces. Bulletin of Iranian Math.Soc. Vol.38 No.4 (2012),925-934. Opoitsev, VI: Heterogenic and combined-concave operators. Sib. Math. J. 16, 781-792 (1975) (in Russian) [26] S. J. O Neill, Partial metrics, valuations and domain theory, in: Proc. 11th Summer Conference on General Topology and Applications. Ann. New York Acad. Sci. 806(1996), 304-315. [27] Samet B., Vetro, C., Vetro., P. Fixed Point theorems for Contractive type mappings, Nonlinear Analysis, 75 (2012), 2154-2165.1.3,1.4 [28] Sastry.K.P.R., Sarma.K.K.M., Srinivasarao.Ch., and Vedula Perraju, Coupled Fixed point theorems for contractive type mappings in partially ordered partial metric spaces, International J. of Pure and Engg. Mathematics (IJPEM) ISSN 2348-3881, Vol.3 No.I (April, 2015),pp. 245-262 [29] Sastry.K.P.R., Sarma.K.K.M., Srinivasarao.Ch., and Vedula Perraju, - - contractive mappings in complete partially ordered partial b-metric spaces, accepted for publication in International J. of Math. Sci. and Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol.9 No. (June, 2015),pp [30] Shatanawiam W., Nashineb H., A generalization of Banach's contraction principle for nonlinear contraction in a partial metric space, Journal of Nonlinear Sciences and Applications, 5(2012), 37-43. 1 [31] Shatanawi, W, Samet, B, Abbas, M., Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces. Math. Comput. Model. 55, 680-687 (2012) [32] Shukla S., Partial b-metric spaces and fixed point theorems, Mediterranean Journal of Mathematics, doi:10.1007/s00009-013-0327-4, (2013) 1,1,1.3, 1,1.1, 1.1, 1.2 [33] Singh S., Chamola B., Quasi-contractions and approximate fixed points, Natur. J., Phys. Sci., 16(2002), 105-107. 1 [34] Vetroa C., Vetrob F., Common fIxed points of mappings satisfying implicit relations in partial metric spaces, Journal of Nonlinear Sciences and Applications, 6(2013), 152-161. 1 [35] Xian Zhang Common fixed point theorems for some new generalised contractive type mappings , J.Math.Aual.Appl.333 (2007), no.2287-301 [36] Yingtaweesittikul HSuzuki type fixed point for generalized multi-valued mappings in b-metric spaces, Fixed Point Theory and Applications, 2013,2013:2015, 9 pp. 1 96 | P a g e
© Copyright 2026 Paperzz