ECE 6382 Green’s Functions in Two and Three Dimensions D. R. Wilton ECE Dept. Static Potential of Point Sources It iswell knownthat thefreespacestaticpotential at anobservation point r duetoapoint charge Q at r is (r) Q , 40 rr Ontheother hand, shouldalsosatisfyPoisson'sequation, V 0 2 where V isthevolumechargedensity. Ques: Howcanwe defineV soastoincorporateapoint charge, Q? Weusuallyavoidexplicitlyintroducingpoint chargesintoPoisson's equationbecausethevolumechargedensity V of apoint chargeis zeroeverywhereexcept thechargelocation, whereit isinfinite (i.e.,afinitechargeQexistswithinavolumeof zero). Representation of Point Sources But wecan mathematicallyrepresent apoint chargeasavolume chargedensityusingdeltafunctions. Setting V Q(xx)(yy)(zz) wecaneasilycheck that evaluatingthenet chargebyintegrating over anynon-vanishingvolumeabout r yieldsthecorrecttotal charge: z y x Q(xx)(yy)(zz)dxdydz Q z y x (Ques:DounitsonRHSandLHS agreeintheaboveeqs.?) Thuswecan saythat thesolutiontoPoisson'sequation, Q 2 (xx)(yy)(z z) 0 is (r) Q Q 40 rr 40 (xx)2 (yy)2 (zz)2 (x, y, z) 2 2 2 Superposition of Potentials Wefurther saythat inavolume V witha r r distributedvolumesourcedensity V,every infinitesimal volumeelement of charge, dq V(r)dV , producesapotential V dV V dq V(r)dV d(r) . 40 rr r r O Bythelinearityof thePoissonoperator, weconcludebysuperimposing thecontributionsof all sourcesthat (r)dV (r) V 40 rr V (r) isanintegrationof V(r) withaweightingfactor potential at r of aunit chargeat r . 1 , the 40 rr A Green’s Function Notethe roleplayedby thefactor G(r,r) 1 40 r r calledtheGreens' function that allowsus to write (r) G(r,r)V (r)dV V Aphysical interpretationof G(r,r) is that of the potential at r due toaunit point chargeat r. Notethat it isasolutionto 2G(r,r) 1 0 (xx)(y y)(z z) or inamorecoordinate-freenotation, 2G(r,r) 1 0 (r r) where (r r) (xx)(y y)(z z) in rectangular coordinates, 1, rV but moregenerally, wesimplyrequirethat (r r) dV in3-D 0, r V V Green’s Function Conditions Tocheckour claims,it sufficestoplacer at thecoordinateoriginso spherical coordinatescanbeused: G(r,0) 1 40 r 1 40r Check that G(r,0) satisfiesthehomogeneousequationwhenr 0: 1 2 G 1 1 r2 1 0 2 G(r,0) 2 r 0, r 0 2 2 2 r r r 40 r r r 40 r 1 1 Next,check that 2G(r,0)dV (r)dV , V enclosesr 0: 0 V V lim2G(r,0)dV limG(r,0)dV 0 0 V 2 0 divergence theorem ˆ r dS lim G(r,0)n 0 V G(r,0) 4 1 2 ˆr ˆ2 sindd lim r , 2 0 r r 0 40 0 lim 0 V 0 if V enclosesr 0. V r̂ V Green’s Function for a General Linear Operator Ingeneral, aGreen'sfunctionisasolutionof thelinear operator equation LG(r,r) (rr) that alsosatisfiesany boundary conditions of theproblem. (Afundamental solution satisfiestheaboveequation,but doesnot necessarilysatisfy theboundaryconditions; toobtainaGreen's functionweaddahomogeneoussolutiontoafundamental solution andenforceBCs.) Aphysical interpretationof G(r,r) isthat of theresponseat rduetoa unit point sourceforcingfunctionat r. Notethat LG(r,r) 0 except at r r where LG(r,r)dV (rr)dV 1, V V rin V A Source-Weighted Superposition over the Unit Source Response Provides a General Solution T hesolutiontothegeneralproblem Lu(r)f(r), f(r) ageneralforcingfunction, isthenfoundbyasource-w eightedsuperpositionof the-f'nresponse: u u(r)G (rr , )f(r)dV V T ocheckthatthisisasolution,notethat Lu(r)LG (rr , )f(r)dVLG (rr , ) f(r)dV V (rr)f(r)dV V f(r) V 3-D Point Source Representation in Various Coordinate Systems ˆ yy ˆ zz ˆ rxx (rr) (xx)(yy)(zz) ()()(zz) , 0 ()(zz), 0 2 (rectangular coordinates) (cylindrical coordinateshave acoord.singularityat 0) (rr)()() , r 0, 0, r2sin (spherical coordinateshave (rr)() , r 0, 0, acoord.singularityat r 0 2 2r sin andat 0,) (r) , r 0 2 4r 2-D Line Source Representation in Various Coordinate Systems ˆy ˆ rx x y (rr) (xx)(yy) ) ( ) ( , () , 2 (re c ta n g u la rc o o rd in a te s ) 0 0 (c y lin d ric a lc o o rd in a te s h a v e a c o o rd .s in g u la ritya t 0 ) Cylindrical Coordinate Example If 0, thevolum eelem entisdVdddz z z ()()(zz) dddz 1 z y x d dz d If 0, becom esundefined,andthevolum eelem entis dV2ddz z 2 ( ) (zz) dddz 1 2 z 0 0 z ( ) (zz) 2ddz 1 2 z 0 z 2 d dz y x Example: A Simple Static Green’s Function with Boundary Conditions --- Charge over a Ground Plane z z 1 [C] r 1 [C] r r r r r 0 o n g r o u n d p l a n e r r r -1 [C] 0 o n g r o u n d p l a n e )a a T h e p o te n tia lG (, rr t rd u e to a u n itc h a rg e a tr b o v e a g ro u n dp la n e c a n b e fo u n d fro m im a g e th e o ry .Itis g iv e n b y 1 1 ) G (, rr 4 0 r r 4 0 r r r z ˆ. w h e rer 2 z fu n d a m e n ta ls o lu tio n h o m o g e n e o u s s o lu tio n N o te th a tfo rrin th e u p p e rh a lfs p a c e (z 0 ), G (, rr )s a tis fie s 1 1 1 2 )0 G (, rr) (, rr) (s in c e (, rr , z 0 ) 0 4 r r 0 0 ) 0 a r a a n dG (, rr t z 0(s in c e r r r t z 0 ). 2 Static Green’s Function with Boundary Conditions (cont.) r r V dV z V r O r 0 o n g r o u n d p l a n e )a F o ra n a r b itr a r yc h a r g e d is tr ib u tio n ( r b o v e a g r o u n d p la n e ,w e V th u s h a v e 1 1 1 () r G (, r r ) ( r ) d V , G (, r r ) V r 4 r r r 0 V z a ˆ is w h e r er r 2 z th e r e fle c tio n o fr b o u tth e z 0p la n e . a , N o te th a tfo re v e r y c o n tr ib u tio n to () r fr o m th e c h a r g e V tr Vd a . th e r e is a s im ila rc o n tr ib u tio n fr o m th e im a g e c h a r g e V tr Vd Example: Scalar Point Source in a Rectangular Waveguide Weassumeaneit timedependenceand y a ascalar wavefunctionthat satisfies 2(r)k2(r)f r, k x,y,z v (r)0, x 0, a; y 0, b; z z b x HencetheGreen'sfunctionfor theproblemsatisfies 2G(r,r)k2G(r,r)rr xx y y z z, G(r,r)0, x 0, a; y 0, b; z withwavesoutgoingfromz z Assumingaseparation-of-variablesform G(r,r) XxYyZz andapplyingboundaryconditionsyields d2X 2 m k X 0 X x A sin k x , k , m1,2, x x x 2 dx a d2Y n 2 k Y 0 Y y B sin k y , k , n1,2, y y y dy2 b d2Z 2 kz Z 0 dz2 ikzzz k2 k2 k2 , k2 k2 k2 , z z x y x y Ce Zz ik zz , kz 2 2 2 2 2 2 , z z De z i k k k , k k k x y x y Point Source in a Waveguide, cont’d H ence G(rr , ) isof theform m x ny ikz,mnzz A s i n sin e , zz m n a b m1n1 G(rr , ) m x ny ikz,mnzz B s i n sin e , zz m n a b m1n1 y a x,y,z z 2 2 2 2 2 k2 m a n b , k m a n b kz,mn 2 2 2 2 2 2 i m a n b k , k m a n b b x C ontinuityof G(rr , ) at zz requires(z limz) 0 Gx ( , y,z;x, y,z)Gx ( , y,z;x, y,z) (alsoderivativesw .r.t.x, y arecontinuous!) m x ny m x ny A s i n s i n B s i n sin m n m n a b a b m1n1 m1n1 G(rr , ) Amnsin m1n1 m x ny ikz,mn zz sin e a b A m n B m n i k z z z ,m n e ,zz i k z z z ,m n e i k z z z ,m n e ,zz Point Source in a Waveguide, cont’d mx n y ikz,mn zz sin e a b m1 n1 Todetermine the constants Amn, note first that G(r,r) Amn sin z z G(r,r)k G(r,r) dz xx y y z zdz 2 2 z z x x y y 2 2 2 Toevaluate theLHS, note that 2 2 2 , x y z 2 z 2G(r,r) G(x, y, z ;r) G(x, y, z ;r) - dz lim 2 0 z z z z Key result! mx n y mx n y ikz,mn Amn sin sin ikz,mn Amn sin sin a b a b m1 n1 m1 n1 2ikz,mn Amn sin m1 n1 z mx n y sin a b z z 2G(r,r) 2G(r,r) - Note dz dz k2G(r,r)dz 0 2 2 x y z z z Key observation! sinceG(r,r) andhence its derivatives w.r.t. x, y are continuousat z z Point Source in a Waveguide, cont’d G(r,r) Amn sin Hence z z m1 n1 mx ny ikz,mn zz sin e a b 2G(rr 2G(rr dz G(x,y,z , ) k , ) z ;r)G(x,y,z;r) z z xx yy zzdz z mx ny sin xx y y a b m1 n1 Finally, todetermine Amn usetheorthogonalitypropertiesof the sin functions: 2ikz,mnAmn sin ba sin 00 px mx qy ny ab sin sin sin dxdy mpnq a a b b 4 px qy sin , usethe a b orthogonalityproperties, andfinallysubstitute pm, qn, toobtain "Project"bothsidesof theaboveontothefunctionssin 2ikz,mnAmn ab mx ny sin sin 4 a b Amn mx ny sin sin ikz,mnab a b 2 2 mx mx ny ny ikz,mn zz G(r,r ) sin sin sin sin e ik a b a a b b m1 n1 z,mn 2D Sources Atw o-dim ensional (noz-variation)"point"source z is actuallyalinesourcew ithunitlinesourcedensity: (rr) (xx)(yy) ( ) () , 0 or (), 0 2 or (rr)dS (rr) dxdy S 1, rS 0, rS y x r 1[m] (rr) dd ˆ ˆ ( R e m i n d e r : I n 2 D , rxy xy ) Itisoftenconvenient totreat theintegrationover Sinthexy-planeasa volum eintegration over,say, acircularcylinderof unit height andradius centeredabout thepointr. Example: Green’s Function for 2D Poisson’s Equation 2-D Poisson's equation: v 2 2 1 1 2 2 , 2 2 2 2 0 x y 2 z Claim: G(r,r) 1 20 ln is the static Green's 1[m] functionfor the 2DPoisson's equationwith unit line source density alongthe z-axis, (r) 0 ˆ ; here wehave ˆ yy ˆ ρ (Reminders: In2-D, r xx 2G(r,r) () 20 neither a nor a z variation!) y x “Proof” of Claim G(rr , ) isasolutionof thehomogeneousPoisson(i.e.,Laplace's)equation, 1 d dG 1 1 d 0 0, 0, d d 20 d 20 z thesingularityat 0actuallygeneratesadeltafunctionat 0 inPoisson'sequation! 1[m] W emust alsoshowthat , ) dV G(rr 2 V 1 00 () 1 2ddz 0 20 whentheintegrationdomainV istheunitheight cylinder of radius centeredabout thepoint 0. Sincetheresult of theintegration must beindependent of , it sufficestoconsider thelimit 0 1 () 1 2ddz 0 20 0 00 limG(rr , ) dV lim 2 0 V y x “Proof” of Claim (cont.) Toevaluate lim2G(rr , ) dV, Vunitheight cylinder of radius, wenotethat 0 V 1 ˆ G(rr , ) ρ 20 1 G(rr , ) ln, 20 Hencetheintegralabove is " fluxper unit vol." lim2G(rr , )dVlim G(rr , ) dV 0 0 V divthm . lim 0 V Flux ˆ ddz G(rr , )n VboundaryofV dS " F lu x p e r u n itv o l." ˆd A d V A n S V 1 2 1 1 1 ˆ ˆ lim ρρ d d z 0 2 0 0 0 0 Thereforewehavefinally, 1 () 1 2ddz 0 20 0 00 limG(rr , ) dV lim 2 0 V F lu x d iv t h m . V Solution Is Easily Extended to 2D Sources Off the z-Axis G(r,r) 1 20 ln r r is the two- dimensional Line source z Green's function, representing a static, scalar line y source in unboundedhomogeneous media satisfying x (r r) ˆ ˆ yy , r xx 2G(r,r) r r 0 The solution for the general case, 2(r) S v (r) ( 0, r S) 0 y in unboundedhomogeneous media is thus (r) 1 G(r,r)v (r)dS 0 S r r 1 S ln r r v (r)dS r 20 S where the integrationis over the source region S r r r z x Example: Green’s Function for 2D Wave Equation Claim: H0(2) (k ) G(r, r) is the outgoing - wave 4i Green's function for the 2D wave equation z with unit line source density along the z - axis, 2G(r, r) k 2G(r, r) ( ) 2 (r) and a harmonic time variation of the form eit . (Reminders: In 2D, r xxˆ yyˆ ρˆ ; here we have 1[m] y x neither a nor a z variation!) The solution H0(2) (k ) of Bessel's equation, 1 d dy 2 k y 0, which is singular at 0, actually d d generates a delta function there! “Proof” of Claim Since() 0, 0, wemust have 2G(r,r)k2G(r,r) 0, 0, H0(2)(k) But thisisindeedthecasesince G(r,r) 4i isanoutgoing solutionof the2Dwaveequation (note n0 sincethereis no-variation)) z 1[m] y Wemust next showthat G(r,r)k G(r,r)dV 2 V 2 1 () 2ddz 1 2 00 x whentheintegrationdomainV istheunit height cylinder of radius centeredabout thepoint 0. Sincetheresult of theintegration must beindependent of , it sufficestoconsider thelimit 0 “Proof” of Claim (cont.) Evaluate lim 2G(r,r)k2G(r,r)dV, Vunit height cylinder of radius 0 V Since weareintegratingover aregionnear theorigin 0, wemayuse small argument approximations totheHankel function, 2 k 1i ln J (k) iN0 (k) 2 G(r,r) 0 , 4i 4i Hencethefirst integral above is G(r,r) "Flux per unit vol. " Flux div thm. lim 2G(r,r)dV lim G(r,r) dV lim 0 0 V 0 V 0 0 1 0 2 ρˆ ρˆ ddz 1 " F lu x p e r u n itv o l." ˆd A d V A n S V 0 2 0 V 0 k2 lim ln 0 0 0 V 1 2 k lim G(r,r)dV k lim 0 F lu x d iv t h m . whereas thesecondis 2 ˆ dS G(r,r) n VboundaryofV 1 2 lim 1 ˆ ρ 2 ln 0 0 2 dddz G(r,r)k G(r,r)dV 1, 2 V 2 rV Extension to 2D Sources Off the z-Axis H (k r r ) G(r, r) is the two-dimensional 4i Green's function for outgoing wavefunctions in unbounded homogeneous media, and satisfies y r x r G(r, r) k G(r, r) (r r) 2 Line source z (2) 0 2 r r S The (outgoing wave) solution for the general case, 2 (r) k2 (r) f (r) y in unbounded homogeneous media is thus S 1 (r) G(r, r) f (r)dS H0(2) (k r r ) f (r)dS 4i S S where the integration is over the source region S r r r r z x Summary of Common 2D, 3D Greens Functions 2 -D (z z 0) : 2 G ( r , r ) k 2 G ( r , r ) G ( r , r ) ( r r ) (2) 0 H (k r r ) y 4i x 2 G ( r , r ) ( r r ) Line source z G ( r , r ) r r r r 1 ln r r 2 y Point source 3 -D : 2 G ( r , r ) k 2 G ( r , r ) G ( r , r ) ( r r ) ik r r e 4 r r 2 G ( r , r ) ( r r ) r 1 G ( r , r ) 4 r r r r r x z These Green’s functions are actually fundamental solutions since there are no imposed boundary conditions Line Source Illumination of a Circular Cylinder A line source illuminates a circular cylinder; both are parallel to the z - axis. Hence the y incident field is (r) H 0(2) (k r r ) , r xˆ 4i The total field satisfies the Dirichlet boundary inc condition (r) inc (r) sca (r) 0 at a on the cylinder surface. The scattered field is source - free and hence is an outgoing solution to 2 sca (r) k 2 sca (r) 0. In cylindrical coordinates it must have the form (r) an H n(2) (k )ein sca n 0 x a Line source The Addition Theorem Weneedanexpansionforinc(r) intermsof cylindrical wavefunctions about x y 0. Suchanexpansionisprovidedbytheadditiontheorem (2) in() H ( k ) J ( k ) e , n n n H0(2)(k rr) J (k)H(2)(k)ein(), n n n y x where istheangular positionof thelinesourcerelativetothex-axis. For our problem, 0. The additiontheoremis analogousto the Laurent expansionabout theorigin of asimplepoleat z z: n n1 z z , z z 1 n0 zz zn zn1, z z n0 Solution of the Line Source Scattering Problem Theadditiontheoremallow sustoeasilyapplytheD irichletboundary conditionat a: 1 (2) in (2) in ( r ) ( r ) J ( k aH ) ( k ) e aH ( k ae ) 0 n n n n a 4i n n inc sca Jn(kaH ) n(2)(k) an 4iHn(2)(ka) Thetotalfieldisthus ( , ) in Jn(kaH ) n(2)(k) (2) 1 (2) H ( k ) J ( k ) H ( k ) n e , n n (2) 4in Hn (ka) Jn(kaH ) n(2)(k) (2) 1 in J ( k ) H ( k ) e n n 4in Hn(2)(ka) , Interpretation as a Green’s Function y Thesourceisa unit strengthlinesource W ecanobtaintheresult for alinesourceoff thex-axisbysimplyreplacing by a Line source x HenceaGreen'sfunctionfor thecylinder scatteringproblemis 1 (2) in Jn(ka)Hn(2)(k) (2) Hn (k)e , Hn (k)Jn(k) (2) Hn (ka) 4i n G(r,r) Jn(ka)Hn(2)(k) (2) in 1 J ( k ) H ( k ) e , n n (2) 4i n H ( k a ) n H0(2)(k rr) 1 Jn(ka)Hn(2)(k) (2) in H ( k ) e n 4i 4i n Hn(2)(ka) fundamental solution homogeneous solution
© Copyright 2026 Paperzz