Shocks on the Determination of Current Account of Two-Period Small Open Economy KS LIAN∗ December 17, 2003 1 The Model max log C1 + β log C2 Q2 C2 = (1 + r0 ) B0∗ + Q1 + s.t C1 + 1 + r1 1 + r1 ∗ r1 = r 1.1 Lagrange function L = log C1 + β log C2 + λ (1 + 1.2 r0 ) B0∗ C2 Q2 − C1 − + Q1 + 1 + r1 1 + r1 First Order Condition 1 =λ C1 β λ = C2 1 + r1 C2 Q2 C1 + = (1 + r0 ) B0∗ + Q1 + 1 + r1 1 + r1 ∗ graduate student,Department of International Trade,NCCU, [email protected] 1 1.3 the collection of equations C2 = β (1 + r1 ) C1 Hp budget constraint ª) C1∗ 1 Q2 = (1 + r0 ) B0∗ + Q1 + 1+β 1 + r1 C2∗ Q2 β (1 + r1 ) (1 + r0 ) B0∗ + Q1 + = 1+β 1 + r1 (1) T B1 = Q1 − C1 − I1 = CA1 = T B1 + r0 B0∗ = (2) 1 Q2 β Q1 − (1 + r0 ) B0∗ + 1+β 1+β 1 + r1 (3) β 1 − βr0 ∗ 1 1 Q1 − B0 − Q2 1+β 1+β 1 + r1 1 + β (4) 1 β (1 + r1 ) Q2 − [(1 + r0 ) B0∗ + Q1 ] 1+β 1+β (5) T B2 = Q2 − C2 − I2 = To derive CA2 CA2 = T B2 + r1 B1∗ By C1 + B1∗ − B0∗ = r0 B0∗ + Q1 ⇒ B1∗ = (1 + r0 ) B0∗ + Q1 − C1 = β β 1 1 Q1 − (1 + r0 ) B0∗ − Q2 1+β 1+β 1 + r1 1 + β hence, we have 1 Q 1+β 2 1 1 Q2 − 1+r 1 1+β CA2 = − β(1+r1 ) 1+β [(1 + r0 ) B0∗ + Q1 ] + β Q 1+β 1 − β 1+β (1 + r0 ) B0∗ =⇒ CA2 = β 1 β β Q2 − Q1 − (1 + r0 ) B0∗ 1 + β 1 + r1 1+β 1+β 2 (6) 1.4 current account and trade balance Initially, β = β0 , r1 = r∗ , Q1 = Q01 , Q2 = Q02 =⇒ β0 1 Q02 = Q01 − (1 + r0 ) B0∗ + 1 + β0 1 + β0 1 + r∗ " T B10 # (7) T B20 = i 1 β0 (1 + r∗ ) h Q02 − (1 + r0 ) B0∗ + Q01 1 + β0 1 + β0 (8) CA01 = 1 − β0 r0 ∗ 1 1 β0 Q01 − B0 − Q0 1 + β0 1 + β0 1 + r∗ 1 + β0 2 (9) CA02 = β0 1 β0 β0 Q0 − Q01 − (1 + r0 ) B0∗ ∗ 2 1 + β0 1 + r1 1 + β0 1 + β0 3 (10) 2 temporary output shock Other things being equal,let Q21 = Q01 − ∆, Q22 = Q02 ,plug into (7)∼(10) β0 0 1 Q02 β0 ∗ = Q1 − ∆ − (1 + r0 ) B0 + = T B10 − ∆ < T B10 ∗ 1 + β0 1 + β0 1+r 1 + β0 " T B12 # T B22 = i β0 (1 + r∗ ) 1 β0 (1 + r∗ ) h Q02 − (1 + r0 ) B0∗ + Q01 − ∆ = T B20 + ∆ > T B22 1 + β0 1 + β0 1 + β0 CA21 = β0 0 β0 1 − β0 r0 ∗ 1 1 0 0 − = CA Q1 − ∆ − B0 − Q ∆ < CA01 1 2 ∗ 1 + β0 1 + β0 1 + r 1 + β0 1 + β0 CA22 = β0 1 β0 0 β0 0 Q − Q − ∆ − (1 + r0 ) B0∗ > CA02 2 1 ∗ 1 + β0 1 + r1 1 + β0 1 + β0 4 3 permanent output shock Other things being equal, let Q21 = Q01 − ∆, Q22 = Q02 − ∆, plug into(7)∼(10) T B13 = T B10 − T B23 = T B20 β0 r∗ ∆ < T B10 1 + β0 1 + r∗ 1 − β0 (1 + r∗ ) − ∆ 1 + β0 CA31 = CA01 − 1 1 [β0 (1 + r∗ ) − 1] ∆ ∗ 1 + β0 1 + r CA32 = CA02 − 1 1 [1 − β0 (1 + r∗ )] ∆ ∗ 1 + β0 1 + r 5 4 IRP shock Other things being equal, let r1 = r∗ + ε, plug into(7)∼(10) β0 1 Q02 0 ∗ = Q1 − (1 + r0 ) B0 + > T B10 ∗ 1 + β0 1 + β0 1+r +ε " T B14 # T B24 = i 1 β0 (1 + r∗ + ε) h Q02 − (1 + r0 ) B0∗ + Q01 < T B20 1 + β0 1 + β0 CA41 = β0 1 − β0 r0 ∗ 1 1 Q01 − B0 − Q02 > CA01 ∗ 1 + β0 1 + β0 1 + r + ε 1 + β0 CA42 = β0 1 β0 β0 Q02 − Q01 − (1 + r0 ) B0∗ < CA02 ∗ 1 + β0 1 + r + ε 1 + β0 1 + β0 6 5 preference shock: β ↓ β = β1 < β0 ⇒ RßÛÊí¾‘ By M RS = 1/C1 C2 U1 = = U2 β/C2 βC1 β ↓⇒ M RS ↑⇒ Ìæ(‰¢ ⇒ ~õ²‡ (C1 j²) Other things being equal, let β = β1 < β0 , plug into(7)∼(10) ∂T B1 1 Q2 1 ∗ = >0 2 Q1 + 2 (1 + r0 ) B0 + ∂β 1 + r∗ (1 + β) (1 + β) β ↑⇒ T B1 ↑⇔ β ↓⇒ T B1 ↓ −1 ∂T B2 1 = (1 + r∗ ) [(1 + r0 ) B0∗ + Q1 ] < 0 2 Q2 − ∂β (1 + β) (1 + β)2 β ↑⇒ T B2 ↓⇔ β ↓⇒ T B2 ↑ 1 1 1 ∂CA1 1 ∗ = Q2 > 0 2 Q1 + 2 (1 + r0 ) B0 + ∂β 1 + r∗ (1 + β)2 (1 + β) (1 + β) β ↑⇒ CA1 ↑⇔ β ↓⇒ CA1 ↓ ∂CA2 −1 1 1 1 ∗ = Q2 − Q1 < 0 2 2 (1 + r0 ) B0 − ∗ ∂β (1 + β) 1 + r (1 + β) (1 + β)2 β ↑⇒ CA2 ↓⇔ β ↓⇒ CA2 ↑ 7
© Copyright 2026 Paperzz