AP Calculus AB Day 10 Section 4.4 7/29/2017 Perkins The Mean Value Theorem for Integrals Gives the average value of f(x) on [a,b]. 4 sum of all y-values avg y-value # of y-values 2 b a b 5 f x dx a ba b 1 Average y-value f x dx ba a 1. Find the average value of y 3 x 2 2x on [1,4]. Then find where f(x) obtains this average value. 4 1 2 3 x 2 x dx Avg val 4 1 1 1 3 2 4 x x 1 3 1 1 64 16 0 48 16 3 3 3 x 2 2 x 16 3 x 2 2 x 16 0 3x 8 x 2 0 x 83 and x 2 ...but only x 83 is in 1,4. This value is obtained when… 2. x d 1 3 3 2 x d 2 3 t 2 t t 3t dt 2 dx dx 2 d 1 3 3 2 3 2 3 1 x x 2 2 2 2 3 dx 3 d 1 3 3 2 1 3 3 2 x 2 x 3 2 2 2 3 dx x 2 3x 0 x 2 3x Using the 2nd Fundamental Theorem of Calculus: x d 2 t 3t dt dx 2 x 2 3 x 1 x 2 3x Second Fundamental Theorem of Calculus d du f t dt f u dx a dx u In order to use this shortcut we must have… a derivative… of an integral… whose lower bound is constant… and whose upper bound is a function of x. d 3 3. t t dt dx x3 We don’t know how to integrate this function! Using the 2nd Fundamental Theorem of Calculus: x 3x 3 2 3 2 x 3 x 3 x x 9 3 AP Calculus AB Day 10 Section 4.4 Perkins The Mean Value Theorem for Integrals 4 2 a b 5 1. Find the average value of y 3 x 2 2x on [1,4]. Then find where f(x) obtains this average value. 2. x d 2 t 3t dt dx 2 Second Fundamental Theorem of Calculus d f t dt dx a u d 3 3. t t dt dx x3
© Copyright 2026 Paperzz