Propagation of kinetic uncertainties through a canonical topology of the TLR4 signaling network in different regions of biochemical reaction space Jayson Gutiérrez, Georges St Laurent III, Silvio Urcuqui-Inchima Additional file 1 — Mathematical structure of the signal transduction network: kinetic parameters, initial conditions, and rate equations Mathematical structure of the signal transduction network The reaction rules governing the dynamical trajectory of each reaction species in the TLR-4-mediated signaling network were modeled via mass action law principles of first and second order for the processes involved solely in intracellular signaling fluxes. Here, reaction rules were assumed to be governed by either a binding (resulting in molecular activation or deactivation) or an enzymatic reaction. For example, for a unimolecular reaction involving any molecular species A the reaction velocity was then formulated as r = k ∗ [A], where [A] stands for the average concentration, over an ensemble of cells (i.e. a cell culture), of A, and k indicating a kinetic coefficient. Key molecular processes were thus modeled according to this simple reaction rule, including non-specific degradation processes of single species, dissociation of molecular complexes, as well as diffusion of species between cellular compartments (see below). In the case of biomolecular reactions involving any pair of molecular species A and B, we implemented the following simple rule to approximate the reaction velocity: r = k ∗ [A] ∗ [B]; this reaction rule was implemented in the case of binding/association reactions. On the other hand, ligand-receptor kinetics and transcriptional processes were modeled via Hill saturation kinetics and some generalizations of these kinetics (see below). Kinetic coefficients involved in unimolecular and bimolecular reactions were sampled from uniform distributions ranging on [0,2.5]. Reaction parameters related with Hill saturation kinetics, such as MichaelisMenten constants, were sampled from the uniform distribution ranging on [0.5,225], whereas Hill (cooperative) coefficients were sampled on [0.5,10]. Maximal transcriptional rates and transcriptional efficiencies were sampled from uniform distributions ranging on [0.5,25] and [0,1], respectively (see below). Uniform distributions were assumed because information on the possible distribution of reaction parameters for this signal transduction has not been previously reported. Most reaction species in the network were assigned non-zero initial concentrations, whose values were sampled from the uniform distribution ranging on [0,1], with some reaction species being assigned zero initial values based on biological intuition. For example, in the case of molecular complexes or phosphorylated forms and mRNA species the concentrations were set to 0, which amounts to 32 zero initial conditions in the network model (see below). 1 Kinetic parameters Supplementary Table 1 - Reaction parameters, and their corresponding biochemical properties, used for simulating the ensemble of 100 dynamical trajectories. Reaction Parameter Biochemical Property Range kps kds ksa kas kda Kb n k1f k1r k2f k2r k3 k4f k4r k5 k6f k6r k7f k7r k8 k9f k9r k10 k11f k11r k12 k13f k13r k14f k14r k15 k16f k16r k17 k18f k18r k19f k19r k20 k21f k21r k22f k22r k23f k23r k24 k25f k25r k26 k27f k27r k28 k29f k29r k30f k30r k31f k31r Production Rate of the TLR4 Susceptible Form Degradation Rate of the TLR4 Susceptible Form Transition Rate between Susceptible-Activated TLR4 Transition Rate between Activated-Susceptible TLR4 Degradation Rate of TLR4 Activated Form MichaelisMenten-Constant Related to TLR4-Activation Cooperativity Coefficient Related to TLR4-Activation Association between MyD88Mal + TLR4 Dissociation of MyD88Mal-TLR4 Association between MyD88Mal-TLR4 + IRAK4 Dissociation of MyD88Mal-TLR4-IRAK4 Dephosphorylation Rate of IRAK4p∗ Association between IRAK4p∗ + IRAK1 Dissociation of IRAK4p∗ -IRAK1 Dephosphorylation Rate of IRAK1p∗ Association between IRAK1p∗ + TRAF6 Dissociation of IRAK1p∗ -TRAF6 Association between IRAK1p∗ -TRAF6 + TABTAK Dissociation of IRAK1p∗ -TRAF6-TABTAK Dephosphorylation Rate of TABTAKp∗ Association between TABTAKp∗ + MKK4/7 Dissociation of TABTAKp∗ -MKK4/7 Dephosphorylation Rate of MKK4/7p∗ Association between MKK4/7p∗ + JNK Dissociation of MKK4/7p∗ -JNK Dephosphorylation Rate of JNKp∗ Import Rate to Nucleus of JNKp∗ Export Rate from Nucleus of JNKp∗ n Association between TABTAKp∗ + MKK3/6 Dissociation of TABTAKp∗ -MKK3/6 Dephosphorylation Rate of MKK3/6p∗ Association between MKK3/6p∗ + p38 Dissociation of MKK3/6p∗ -p38 Dephosphorylation Rate of p38p∗ Import Rate to Nucleus of p38p∗ Export Rate from Nucleus of p38p∗ n Association between TABTAKp∗ + IKKc Dissociation of TABTAKp∗ -IKKc Dephosphorylation Rate of IKKcp∗ Association between IKKcp∗ + IκB-NFκB Dissociation of IKKcp∗ -IκB-NFκB Import Rate to Nucleus of NFκB Export Rate from Nucleus of NFκBn Association between IKKcp∗ + TpL2 Dissociation of IKKcp∗ -TpL2 Dephosphorylation Rate of TpL2p∗ Association between TpL2p∗ + MKK1/2 Dissociation of TpL2p∗ -MKK1/2 Dephosphorylation Rate of MKK1/2p∗ Association between MKK1/2p∗ + ERK Dissociation of MKK1/2p∗ -ERK Dephosphorylation Rate of ERKp∗ Import Rate to Nucleus of ERKp∗ Export Rate from Nucleus of ERKp∗ n Association between TLR4 + I1 Dissociation of TLR4-I1 Association between TLR4-I1 + I2 Dissociation of TLR4-I1 -I2 [6.0x10−4 , 0.0995] (nM h−1 ) [8.8x10−6 , 0.0990] (h−1 ) [5.8x10−4 , 0.0976] (s−1 ) [2.0x10−4 , 0.0980] (s−1 ) [5.0x10−5 , 0.0996] (h−1 ) [0.0218, 39.9855] (nM) [0.0585, 9.9587] [5.0x10−5 , 0.0995] (nM−1 s−1 ) [1.0x10−3 , 0.0988] (s−1 ) [1.0x10−3 , 0.0980] (nM−1 s−1 ) [1.1x10−3 , 0.0994] (s−1 ) [3.8x10−3 , 0.0998] (s−1 ) [5.9x10−5 , 0.0992] (nM−1 s−1 ) [2.3x10−3 , 0.0982] (s−1 ) [1.2x10−3 , 0.0988] (s−1 ) [2.0x10−3 , 0.0963] (nM−1 s−1 ) [4.9x10−4 , 0.0989] (s−1 ) [3.3x10−4 , 0.0981] (nM−1 s−1 ) [1.8x10−3 , 0.0987] (s−1 ) [3.7x10−4 , 0.0985] (s−1 ) [2.3x10−4 , 0.0999] (nM−1 s−1 ) [1.6x10−5 , 0.0992] (s−1 ) [2.1x10−3 , 0.0965] (s−1 ) [1.3x10−3 , 0.0996] (nM−1 s−1 ) [1.6x10−3 , 0.0975] (s−1 ) [7.4x10−4 , 0.0977] (s−1 ) [3.4x10−3 , 0.0998] (nM−1 s−1 ) [1.6x10−4 , 0.0988] (s−1 ) [2.5x10−3 , 0.0961] (nM−1 s−1 ) [2.9x10−3 , 0.0989] (s−1 ) [1.3x10−3 , 0.0993] (s−1 ) [2.2x10−3 , 0.0993] (nM−1 s−1 ) [7.9x10−6 , 0.0997] (s−1 ) [2.9x10−4 , 0.0985] (s−1 ) [2.5x10−3 , 0.0971] (nM−1 s−1 ) [7.7x10−4 , 0.0990] (s−1 ) [1.2x10−4 , 0.0996] (nM−1 s−1 ) [1.0x10−4 , 0.0993] (s−1 ) [1.4x10−3 , 0.0996] (s−1 ) [7.3x10−4 , 0.0999] (nM−1 s−1 ) [1.1x10−3 , 0.0997] (s−1 ) [1.5x10−3 , 0.0985] (nM−1 s−1 ) [1.3x10−3 , 0.0994] (s−1 ) [4.9x10−4 , 0.0997] (nM−1 s−1 ) [1.5x10−4 , 0.0992] (s−1 ) [1.9x10−3 , 0.0987] (s−1 ) [1.2x10−5 , 0.0998] (nM−1 s−1 ) [2.6x10−4 , 0.0995] (s−1 ) [1.1x10−4 , 0.0991] (s−1 ) [2.1x10−3 , 0.0987] (nM−1 s−1 ) [1.0x10−3 , 0.0987] (s−1 ) [2.0x10−3 , 0.0987] (s−1 ) [8.5x10−4 , 0.0981] (nM−1 s−1 ) [3.2x10−3 , 0.0995] (s−1 ) [1.4x10−3 , 0.0987] (nM−1 s−1 ) [1.6x10−3 , 0.0965] (s−1 ) [2.1x10−4 , 0.0998] (nM−1 s−1 ) [9.5x10−4 , 0.0997] (s−1 ) 2 Supplementary Table 2 - Reaction parameters, and their corresponding biochemical properties, used for simulating the ensemble of 100 dynamical trajectories. Reaction Parameter Biochemical Property Range k32f k32r k33f k33r k34f k34r k35f k35r k36f k36r k37f k37r k38f k38r k39f k39r k40f k40r k41 k42f k42r k43f k43r k44f k44r k45f k45r k46f k46r k2cat k4cat k7cat k9cat k11cat k14cat k16cat k19cat k21cat k23cat k25cat k27cat k40cat α1 β1 V A1 V B1 Kβ1 kd T nf α2 β2 V A2 V B2 Kβ2 kd Cxc T maxT nf T maxCxc ρT nf ρCxc Association between TLR4-I1 -I2 + I3 Dissociation of TLR4-I1 -I2 -I3 Association between TLR4-I1 -I2 -I3 + TRAM Dissociation of TLR4-I1 -I2 -I3 -TRAM Association between TLR4-I1 -I2 -I3 -TRAM + TRIF Dissociation of TLR4-I1 -I2 -I3 -TRAM-TRIF Association between TLR4-I1 -I2 -I3 -TRAM-TRIF + RIP1 Dissociation of TLR4-I1 -I2 -I3 -TRAM-TRIF-RIP1 Association between TLR4-I1 -I2 -I3 -TRAM-TRIF-RIP1 + AIP1 Dissociation of TLR4-I1 -I2 -I3 -TRAM-TRIF-RIP1-AIP1 Association between TLR4-I1 -I2 -I3 -TRAM-TRIF-RIP1-AIP1 + TRAF6 Dissociation of TLR4-I1 -I2 -I3 -TRAM-TRIF-RIP1-AIP1-TRAF6 Association between TLR4-I1 -I2 -I3 -TRAM-TRIF + TRAF6 Dissociation of TLR4-I1 -I2 -I3 -TRAM-TRIF-TRAF6 Association between TLR4-I1 -I2 -I3 -TRAM-TRIF + TBK1 Dissociation of TLR4-I1 -I2 -I3 -TRAM-TRIF-TBK1 Association between TLR4-I1 -I2 -I3 -TRAM-TRIF-TBK1 + IRF Dissociation of TLR4-I1 -I2 -I3 -TRAM-TRIF-TBK1-IRF Dephosphorylation Rate of IRFp∗ Dimerization of IRFp∗ with IRFp∗ Dissociation of IRFpp∗ Export Rate to Nucleus of IRFpp∗ Import Rate from Nucleus of IRFpp∗ n Association between JNKp∗ n and AP1n Dissociation of JNKp∗ n-AP1n Association between p38p∗ n and AP1n Dissociation of p38p∗ n-AP1n Association between ERKp∗ n and AP1n Dissociation of ERKp∗ n-AP1n Phosphorylation Rate of IRAK4 Phosphorylation Rate of IRAK1 Phosphorylation Rate of TABTAK Phosphorylation Rate of MKK4/7 Phosphorylation Rate of JNK Phosphorylation Rate of MKK3/6 Phosphorylation Rate of p38 Phosphorylation Rate of IKKc Dissociation Rate of IκB-NFκB Phosphorylation Rate of TpL2 Phosphorylation Rate of MKK1/2 Phosphorylation Rate of ERK Phosphorylation Rate of IRF Transcriptional Strength of AP1 over Tnf α Transcriptional Strength of NFκB over Tnf α Cooperativity Effects of AP1 on Tnf α Transcription Cooperativity Effects of NFκB on Tnf α Transcription MichaelisMenten-Constant Related to Tnf α Transcription Degradation Rate of Tnf α mRNA Transcriptional Strength of IRFpp∗ over Cxcl10 Transcriptional Strength of NFκB over Cxcl10 Cooperativity Effects of IRFpp∗ on Cxcl10 Cooperativity Effects of NFκB on Cxcl10 MichaelisMenten-Constant Related to Cxcl10 Transcription Degradation Rate of Cxcl10 mRNA Max. Transcriptional Rate of Tnf α Max. Transcriptional Rate of Cxcl10 Transcriptional Efficiency of the Tnf α Promoter Transcriptional Efficiency of the Cxcl10 Promoter [9.3x10−4 , 0.0986] (nM−1 s−1 ) [3.7x10−4 , 0.0977] (s−1 ) [2.4x10−3 , 0.0999] (nM−1 s−1 ) [6.7x10−5 , 0.0996] (s−1 ) [4.6x10−4 , 0.0996] (nM−1 s−1 ) [1.2x10−3 , 0.0998] (s−1 ) [1.6x10−3 , 0.0993] (nM−1 s−1 ) [2.1x10−3 , 0.0992] (s−1 ) [2.7x10−4 , 0.0980] (nM−1 s−1 ) [1.6x10−3 , 0.0996] (s−1 ) [6.1x10−4 , 0.0985] (nM−1 s−1 ) [2.3x10−3 , 0.0999] (s−1 ) [3.2x10−3 , 0.0991] (nM−1 s−1 ) [3.1x10−3 , 0.0999] (s−1 ) [5.0x10−4 , 0.0996] (nM−1 s−1 ) [3.1x10−4 , 0.0989] (s−1 ) [9.1x10−4 , 0.0991] (nM−1 s−1 ) [4.1x10−4 , 0.0997] (s−1 ) [5.7x10−4 , 0.0996] (s−1 ) [5.3x10−4 , 0.0998] (nM−1 s−1 ) [9.1x10−4 , 0.0998] (s−1 ) [3.5x10−3 , 0.0994] (nM−1 s−1 ) [5.5x10−4 , 0.0978] (s−1 ) [1.1x10−3 , 0.0990] (nM−1 s−1 ) [4.6x10−4 , 0.0987] (s−1 ) [4.5x10−3 , 0.0994] (nM−1 s−1 ) [8.8x10−4 , 0.0999] (s−1 ) [7.3x10−4 , 0.0982] (nM−1 s−1 ) [2.8x10−4 , 0.0991] (s−1 ) [1.0x10−4 , 0.0998] (s−1 ) [1.8x10−4 , 0.0997] (s−1 ) [1.9x10−3 , 0.0999] (s−1 ) [2.5x10−3 , 0.0993] (s−1 ) [5.4x10−5 , 0.0999] (s−1 ) [9.8x10−4 , 0.0989] (s−1 ) [3.2x10−3 , 0.0997] (s−1 ) [8.8x10−4 , 0.0999] (s−1 ) [7.5x10−4 , 0.0991] (s−1 ) [5.3x10−4 , 0.0999] (s−1 ) [3.8x10−4 , 0.0993] (s−1 ) [1.5x10−3 , 0.0994] (s−1 ) [0.5049, 0.9959] (s−1 ) [0.0745, 3.9572] [0.1313, 3.8909] [5.0094, 9.9702] [1.3x10−3 , 0.0994] [0.5178, 0.9963] (nM) [0.5012, 0.9973] (h−1 ) [3.9x10−2 , 3.9763] [5.9x10−2 , 3.9571] [7.1x10−4 , 0.0999] [7.6x10−4 , 0.0987] [5.0305, 9.9171] (nM) [5.6x10−4 , 0.0997] (h−1 ) [1.0033, 1.9856] (nM h−1 ) [1.0073, 1.9859] (nM h−1 ) [2.0x10−3 , 0.0996] [2.3x10−5 , 0.0975] 3 Supplementary Table 3 - Reaction parameters, and their corresponding biochemical properties, used for simulating the ensemble of 10 predictive dynamical trajectories. Reaction Parameter Biochemical Property Range kps kds ksa kas kda Kb n k1f k1r k2f k2r k3 k4f k4r k5 k6f k6r k7f k7r k8 k9f k9r k10 k11f k11r k12 k13f k13r k14f k14r k15 k16f k16r k17 k18f k18r k19f k19r k20 k21f k21r k22f k22r k23f k23r k24 k25f k25r k26 k27f k27r k28 k29f k29r k30f k30r k31f k31r Production Rate of the TLR4 Susceptible Form Degradation Rate of the TLR4 Susceptible Form Transition Rate between Susceptible-Activated TLR4 Transition Rate between Activated-Susceptible TLR4 Degradation Rate of TLR4 Activated Form MichaelisMenten-Constant Related to TLR4-Activation Cooperativity Coefficient Related to TLR4-Activation Association between MyD88Mal + TLR4 Dissociation of MyD88Mal-TLR4 Association between MyD88Mal-TLR4 + IRAK4 Dissociation of MyD88Mal-TLR4-IRAK4 Dephosphorylation Rate of IRAK4p∗ Association between IRAK4p∗ + IRAK1 Dissociation of IRAK4p∗ -IRAK1 Dephosphorylation Rate of IRAK1p∗ Association between IRAK1p∗ + TRAF6 Dissociation of IRAK1p∗ -TRAF6 Association between IRAK1p∗ -TRAF6 + TABTAK Dissociation of IRAK1p∗ -TRAF6-TABTAK Dephosphorylation Rate of TABTAKp∗ Association between TABTAKp∗ + MKK4/7 Dissociation of TABTAKp∗ -MKK4/7 Dephosphorylation Rate of MKK4/7p∗ Association between MKK4/7p∗ + JNK Dissociation of MKK4/7p∗ -JNK Dephosphorylation Rate of JNKp∗ Import Rate to Nucleus of JNKp∗ Export Rate from Nucleus of JNKp∗ n Association between TABTAKp∗ + MKK3/6 Dissociation of TABTAKp∗ -MKK3/6 Dephosphorylation Rate of MKK3/6p∗ Association between MKK3/6p∗ + p38 Dissociation of MKK3/6p∗ -p38 Dephosphorylation Rate of p38p∗ Import Rate to Nucleus of p38p∗ Export Rate from Nucleus of p38p∗ n Association between TABTAKp∗ + IKKc Dissociation of TABTAKp∗ -IKKc Dephosphorylation Rate of IKKcp∗ Association between IKKcp∗ + IκB-NFκB Dissociation of IKKcp∗ -IκB-NFκB Import Rate to Nucleus of NFκB Export Rate from Nucleus of NFκBn Association between IKKcp∗ + TpL2 Dissociation of IKKcp∗ -TpL2 Dephosphorylation Rate of TpL2p∗ Association between TpL2p∗ + MKK1/2 Dissociation of TpL2p∗ -MKK1/2 Dephosphorylation Rate of MKK1/2p∗ Association between MKK1/2p∗ + ERK Dissociation of MKK1/2p∗ -ERK Dephosphorylation Rate of ERKp∗ Import Rate to Nucleus of ERKp∗ Export Rate from Nucleus of ERKp∗ n Association between TLR4 + I1 Dissociation of TLR4-I1 Association between TLR4-I1 + I2 Dissociation of TLR4-I1 -I2 [8.8x10−3 , 0.8037] (nM h−1 ) [4.8x10−3 , 0.8258] (h−1 ) [5.5x10−3 , 0.0929] (s−1 ) [1.0x10−2 , 0.0944] (s−1 ) [3.4x10−3 , 0.2487] (h−1 ) [2.0564, 224.3379] (nM) [0.5070, 7.4609] [5.5x10−4 , 0.0937] (nM−1 s−1 ) [3.3x10−3 , 0.0964] (s−1 ) [2.1x10−2 , 0.0645] (nM−1 s−1 ) [0.0172, 0.0927] (s−1 ) [0.0128, 0.0993] (s−1 ) [9.9x10−3 , 0.0977] (nM−1 s−1 ) [4.3x10−3 , 0.0982] (s−1 ) [4.7x10−3 , 0.0988] (s−1 ) [9.7x10−3 , 0.0680] (nM−1 s−1 ) [0.0172, 0.0640] (s−1 ) [3.4x10−3 , 0.0653] (nM−1 s−1 ) [0.0280, 0.0987] (s−1 ) [3.x10−3 , 0.4331] (s−1 ) [1.4x10−3 , 0.0753] (nM−1 s−1 ) [1.6x10−3 , 0.0732] (s−1 ) [2.1x10−3 , 0.0683] (s−1 ) [4.5x10−3 , 0.4935] (nM−1 s−1 ) [8.9x10−3 , 0.0906] (s−1 ) [3.3x10−3 , 0.0789] (s−1 ) [0.0242, 0.0854] (nM−1 s−1 ) [2.6x10−3 , 0.0751] (s−1 ) [4.8x10−3 , 0.0809] (nM−1 s−1 ) [0.0219, 0.0987] (s−1 ) [0.0111, 0.0792] (s−1 ) [3.9x10−3 , 0.0902] (nM−1 s−1 ) [0.0125, 0.1788] (s−1 ) [8.2x10−3 , 0.4369] (s−1 ) [0.0163, 0.0876] (nM−1 s−1 ) [6.6x10−3 , 0.6447] (s−1 ) [0.0374, 1.3332] (nM−1 s−1 ) [5.9x10−3 , 0.0974] (s−1 ) [0.0313, 0.0990] (s−1 ) [0.0199, 0.3221] (nM−1 s−1 ) [4.8x10−3 , 0.0516] (s−1 ) [3.6x10−3 , 0.5451] (nM−1 s−1 ) [0.0265, 0.0763] (s−1 ) [9.6x10−3 , 0.0953] (nM−1 s−1 ) [0.0291, 0.3354] (s−1 ) [5.0x10−3 , 0.0872] (s−1 ) [6.4x10−3 , 1.7256] (nM−1 s−1 ) [0.0135, 0.7698] (s−1 ) [2.0x10−3 , 0.0970] (s−1 ) [0.0234, 0.0870] (nM−1 s−1 ) [3.5x10−3 , 0.1723] (s−1 ) [0.0195, 0.0814] (s−1 ) [0.01001, 0.7902] (nM−1 s−1 ) [0.0107, 0.0987] (s−1 ) [9.4x10−3 , 0.0689] (nM−1 s−1 ) [0.0109, 2.1297] (s−1 ) [0.0119, 0.08026] (nM−1 s−1 ) [0.0281, 1.0450] (s−1 ) 4 Supplementary Table 4 - Reaction parameters, and their corresponding biochemical properties, used for simulating the ensemble of 10 predictive dynamical trajectories. Reaction Parameter Biochemical Property Range k32f k32r k33f k33r k34f k34r k35f k35r k36f k36r k37f k37r k38f k38r k39f k39r k40f k40r k41 k42f k42r k43f k43r k44f k44r k45f k45r k46f k46r k2cat k4cat k7cat k9cat k11cat k14cat k16cat k19cat k21cat k23cat k25cat k27cat k40cat α1 β1 V A1 V B1 Kβ1 kd T nf α2 β2 V A2 V B2 Kβ2 kd Cxc T maxT nf T maxCxc ρT nf ρCxc Association between TLR4-I1 -I2 + I3 Dissociation of TLR4-I1 -I2 -I3 Association between TLR4-I1 -I2 -I3 + TRAM Dissociation of TLR4-I1 -I2 -I3 -TRAM Association between TLR4-I1 -I2 -I3 -TRAM + TRIF Dissociation of TLR4-I1 -I2 -I3 -TRAM-TRIF Association between TLR4-I1 -I2 -I3 -TRAM-TRIF + RIP1 Dissociation of TLR4-I1 -I2 -I3 -TRAM-TRIF-RIP1 Association between TLR4-I1 -I2 -I3 -TRAM-TRIF-RIP1 + AIP1 Dissociation of TLR4-I1 -I2 -I3 -TRAM-TRIF-RIP1-AIP1 Association between TLR4-I1 -I2 -I3 -TRAM-TRIF-RIP1-AIP1 + TRAF6 Dissociation of TLR4-I1 -I2 -I3 -TRAM-TRIF-RIP1-AIP1-TRAF6 Association between TLR4-I1 -I2 -I3 -TRAM-TRIF + TRAF6 Dissociation of TLR4-I1 -I2 -I3 -TRAM-TRIF-TRAF6 Association between TLR4-I1 -I2 -I3 -TRAM-TRIF + TBK1 Dissociation of TLR4-I1 -I2 -I3 -TRAM-TRIF-TBK1 Association between TLR4-I1 -I2 -I3 -TRAM-TRIF-TBK1 + IRF Dissociation of TLR4-I1 -I2 -I3 -TRAM-TRIF-TBK1-IRF Dephosphorylation Rate of IRFp∗ Dimerization of IRFp∗ with IRFp∗ Dissociation of IRFpp∗ Export Rate to Nucleus of IRFpp∗ Import Rate from Nucleus of IRFpp∗ n Association between JNKp∗ n and AP1n Dissociation of JNKp∗ n-AP1n Association between p38p∗ n and AP1n Dissociation of p38p∗ n-AP1n Association between ERKp∗ n and AP1n Dissociation of ERKp∗ n-AP1n Phosphorylation Rate of IRAK4 Phosphorylation Rate of IRAK1 Phosphorylation Rate of TABTAK Phosphorylation Rate of MKK4/7 Phosphorylation Rate of JNK Phosphorylation Rate of MKK3/6 Phosphorylation Rate of p38 Phosphorylation Rate of IKKc Dissociation Rate of IκB-NFκB Phosphorylation Rate of TpL2 Phosphorylation Rate of MKK1/2 Phosphorylation Rate of ERK Phosphorylation Rate of IRF Transcriptional Strength of AP1 over Tnf α Transcriptional Strength of NFκB over Tnf α Cooperativity Effects of AP1 on Tnf α Transcription Cooperativity Effects of NFκB on Tnf α Transcription MichaelisMenten-Constant Related to Tnf α Transcription Degradation Rate of Tnf α mRNA Transcriptional Strength of IRFpp∗ over Cxcl10 Transcriptional Strength of NFκB over Cxcl10 Cooperativity Effects of IRFpp∗ on Cxcl10 Cooperativity Effects of NFκB on Cxcl10 MichaelisMenten-Constant Related to Cxcl10 Transcription Degradation Rate of Cxcl10 mRNA Max. Transcriptional Rate of Tnf α Max. Transcriptional Rate of Cxcl10 Transcriptional Efficiency of the Tnf α Promoter Transcriptional Efficiency of the Cxcl10 Promoter [2.2x10−3 , 0.0898] (nM−1 s−1 ) [0.0103, 0.0775] (s−1 ) [0.0194, 0.0991] (nM−1 s−1 ) [0.0417, 0.1498] (s−1 ) [5.2x10−3 , 0.2594] (nM−1 s−1 ) [0.0157, 0.5049] (s−1 ) [5.5x10−3 , 0.1454] (nM−1 s−1 ) [0.0232, 0.0957] (s−1 ) [0.0198, 0.6388] (nM−1 s−1 ) [0.0266, 0.0753] (s−1 ) [5.0x10−3 , 0.1734] (nM−1 s−1 ) [6.3x10−3 , 0.1642] (s−1 ) [0.0417, 0.0950] (nM−1 s−1 ) [5.0x10−4 , 0.0946] (s−1 ) [0.0154, 0.0939] (nM−1 s−1 ) [0.0152, 1.8878] (s−1 ) [1.8x10−3 , 0.0641] (nM−1 s−1 ) [9.2x10−3 , 0.1056] (s−1 ) [0.0304, 1.2562] (s−1 ) [0.0142, 0.2026] (nM−1 s−1 ) [0.0136, 1.3562] (s−1 ) [9.4x10−3 , 0.0791] (nM−1 s−1 ) [4.4x10−3 , 0.0816] (s−1 ) [2.6x10−4 , 0.0939] (nM−1 s−1 ) [8.1x10−3 , 0.0525] (s−1 ) [9.9x10−3 , 0.1876] (nM−1 s−1 ) [2.5x10−3 , 0.1170] (s−1 ) [4.5x10−3 , 0.0821] (nM−1 s−1 ) [2.8x10−3 , 0.0948] (s−1 ) [9.9x10−4 , 0.0957] (s−1 ) [5.8x10−4 , 0.9318] (s−1 ) [6.2x10−3 , 0.1477] (s−1 ) [0.0245, 0.3642] (s−1 ) [3.3x10−3 , 0.0643] (s−1 ) [8.3x10−3 , 0.0950] (s−1 ) [0.0300, 0.0927] (s−1 ) [0.0961, 1.5261] (s−1 ) [2.4x10−3 , 0.0956] (s−1 ) [9.2x10−4 , 0.0878] (s−1 ) [3.7x10−3 , 0.0514] (s−1 ) [1.9x10−3 , 0.1177] (s−1 ) [0.6631, 0.9876] (s−1 ) [0.4139, 3.7742] [0.0691, 3.8909] [6.0094, 9.9702] [4.0045, 6.7778] [4.5178, 22.3941] (nM) [0.0140, 0.0992] (h−1 ) [0.5774, 1.9506] [0.6439, 1.9872] [4.0094, 7.2702] [3.1194, 5.1711] [0.7288, 22.5447] (nM) [7.7x10−4 , 0.0979] (h−1 ) [0.8637, 23.8489] (nM h−1 ) [0.7310, 13.4748] (nM h−1 ) [0.0231, 0.2059] [0.0102, 0.1111] 5 Initial conditions Supplementary Table 5 - Initial concentrations assigned to each reaction species modeled. Reaction Species TLR4s TLR4a MyD88Mal MyD88MalTLR4a MyD88MalTLR4aIRAK4 IRAK4 IRAK4p∗ IRAK4pIRAK1 IRAK1 IRAK1p∗ TRAF6 IRAK1p∗ TRAF6 TABTAK IRAK1p∗ TRAF6TABTAK TABTAKp∗ MKK47 TABTAKp∗ MKK47 MKK47p∗ JNK MKK47p∗ JNK JNKp∗ JNKp∗ n MKK36 TABTAKp∗ MKK36 MKK36p∗ P38 MKK36p∗ P38 P38p∗ P38p∗ n IKKc TABTAKp∗ IKKc IKKcp∗ IkBNFkB IKKcp∗ IkBNFkB IkB NFkB NFkBn TpL2 Exp 1 Exp 2 (nm) Range (nm) [0.055, 0.162] [0.199, 0.587] [0.510, 1.463] [0.375, 1.066] [0.271, 0.795] [0.161, 0.481] [0.473, 1.391] [0.000, 0.000] [0.009, 0.028] [0.042, 0.124] [0.335, 0.999] [0.068, 0.199] [0.421, 1.247] [0.000, 0.000] [0.000, 0.000] [0.092, 0.273] [0.000, 0.000] [0.490, 1.464] [0.353, 1.050] [0.000, 0.000] [0.225, 0.669] [0.000, 0.000] [0.272, 0.801] [0.288, 0.812] [0.007, 0.019] [0.137, 0.397] [0.109, 0.323] [0.000, 0.000] [0.000, 0.000] [0.432, 1.277] [0.000, 0.000] [0.000, 0.000] [0.427, 1.269] [0.264, 0.771] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.164, 0.461] 0.111 0.393 0.987 0.734 0.535 0.321 0.931 0.000 0.019 0.083 0.668 0.134 0.841 0.000 0.000 0.182 0.000 0.976 0.702 0.000 0.446 0.000 0.128 0.543 0.013 0.265 0.216 0.000 0.000 0.851 0.000 0.000 0.847 0.519 0.000 0.000 0.000 0.313 Reaction Species IKKcp∗ TpL2 TpL2p∗ MKK12 TpL2p∗ MKK12 MKK12p∗ ERK MKK12p∗ ERK ERKp∗ ERKp∗ n Intermediary-1(I1) TLR4aI1 Intermediary-2 (I2) TLR4aI1I2 Intermediary-3 (I3) TLR4aI1I2I3 TRAM TLR4aI1I2I3TRAM TRIF TLR4aI1I2I3TRAMTRIF RIP1 TLR4aI1I2I3TRAMTRIFRIP1 AIP1 TLR4aI1I2I3TRAMTRIFRIP1AIP1 TLR4aI1I2I3TRAMTRIFRIP1AIP1TRAF6 TLR4aI1I2I3TRAMTRIFTRAF6 TLR4aI1I2I3TRAMTRIFTBK1 TBK1 IRF TLR4aI1I2I3TRAMTRIFTBK1IRF IRFp∗ IRF2p∗ IRF2p∗ n AP1 JNKp∗ nAP1 P38p∗ nAP1 ERKp∗ nAP1 Tnf -alpha Cxcl10 6 Exp 1 Exp 2 (nm) Range (nm) [0.000, 0.000] [0.000, 0.000] [0.516, 1.465] [0.000, 0.000] [0.000, 0.000] [0.120, 0.354] [0.302, 0.892] [0.140, 0.416] [0.000, 0.000] [0.472, 1.361] [0.000, 0.000] [0.383, 1.129] [0.000, 0.000] [0.029, 0.084] [0.179, 0.513] [0.493, 1.446] [0.000, 0.000] [0.484, 1.418] [0.389, 1.166] [0.453, 1.288] [0.000, 0.000] [0.266, 0.777] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.410, 1.197] [0.355, 1.015] [0.000, 0.000] [0.210, 0.626] [0.475, 1.396] [0.000, 0.000] [0.000, 0.000] [0.157, 0.452] [0.000, 0.000] [0.416, 1.237] [0.000, 0.000] [0.000, 0.000] 0.000 0.000 0.979 0.000 0.000 0.237 0.595 0.278 0.000 0.925 0.000 0.753 0.000 0.057 0.344 0.972 0.000 0.949 0.779 0.871 0.000 0.519 0.000 0.000 0.000 0.000 0.807 0.696 0.000 0.420 0.936 0.000 0.000 0.303 0.000 0.825 0.000 0.000 Rate equations An exponential decay temporal profile for the LPS (ligand) concentration was implemented in this way: LP S(t) = Exp−0.01∗t The rate equations shown below were constructed on the basis of mass-balance principles. It is also worth noting that signaling fluxes involve transactions of information in terms of biochemical reactions, as opposed to those mass and energy fluxes sustaining metabolic processes. 1) Temporal variation in the concentration of Rs (the TLR4 susceptible form): d[Rs] [LP S]n + ka7→s [Ra] − kds [Rs] = kps − ks7→a [Rs] dt Kbn + [LP S]n 2) Temporal variation in the concentration of Ra (the TLR4 activated form): d[Ra] [LP S]n = ks7→a [Rs] − ka7→s [Ra] − kda [Ra] dt Kbn + [LP S]n 3) Temporal variation in the concentration of the reaction species MyD88/Mal: d[M yD88/M al] = −(k1f [M yD88/M al][Ra] − k1r [M yD88/M al − Ra]) dt 4) Temporal variation in the concentration of the complex MyD88/Mal-Ra: d[M yD88/M al − Ra] = dt (k1f [M yD88/M al][Ra] − k1r [M yD88/M al − Ra]) − (k2f [M yD88/M al − Ra][IRAK4] − k2r [M yD88/M al − Ra − IRAK4]) + (k2cat [M yD88/M al − Ra − IRAK4]) 5) Temporal variation in the concentration of the complex MyD88/Mal-Ra-IRAK4: d[M yD88/M al − Ra − IRAK4] = dt (k2f [M yD88/M al − Ra][IRAK4] − k2r [M yD88/M al − Ra − IRAK4]) − (k2cat [M yD88/M al − Ra − IRAK4]) 6) Temporal variation in the concentration of the reaction species IRAK4: d[IRAK4] = dt − (k2f [M yD88/M al − Ra][IRAK4] − k2r [M yD88/M al − Ra − IRAK4]) + (k3 IRAK4p∗ ) 7) Temporal variation in the concentration of the reaction species IRAK4p∗ : d[IRAK4p∗ ] = dt − (k3 IRAK4p∗ ) + (k2cat [M yD88/M al − Ra − IRAK4]) − (k4f [IRAK4p∗ ][IRAK1] − k4r [IRAK4p∗ − IRAK1]) + (k4cat [IRAK4p∗ − IRAK1]) 7 8) Temporal variation in the concentration of the complex IRAK4p∗ -IRAK1: d[IRAK4p∗ − IRAK1] = dt ∗ (k4f [IRAK4p ][IRAK1] − k4r [IRAK4p∗ − IRAK1]) − (k2cat [M yD88/M al − Ra − IRAK4]) 9) Temporal variation in the concentration of the reaction species IRAK1: d[IRAK1] = dt − (k4f [IRAK4p∗ ][IRAK1] − k4r [IRAK4p∗ − IRAK1]) + (k5 [IRAK1p∗ ]) 10) Temporal variation in the concentration of the reaction species IRAK1p∗ : d[IRAK1p∗ ] = dt − (k5 [IRAK1p∗ ]) + (k4cat [IRAK4p∗ − IRAK1]) − (k6f [IRAK1p∗ ] − k6r[IRAK1p∗ − T RAF 6]) 11) Temporal variation in the concentration of the reaction species TRAF6: d[T RAF 6] = dt − (k6f [IRAK1p∗ ] − k6r[IRAK1p∗ − T RAF 6]) − (k37f [RaI1 I2 I3 − T RIF − T RAM − RIP − AIP 1][T RAF 6] − k37r [RaI1 I2 I3 − T RIF − T RAM − RIP − AIP 1 − T RAF 6]) − (k38f [RaI1 I2 I3 − T RIF − T RAM ][T RAF 6] − k38r [RaI1 I2 I3 − T RIF − T RAM − T RAF 6]) 12) Temporal variation in the concentration of the complex IRAK1p∗ -TRAF6: d[IRAK1p∗ − T RAF 6] = dt ∗ − (k6f [IRAK1p ] − k6r[IRAK1p∗ − T RAF 6]) − + (k7f [IRAK1p∗ − T RAF 6][T ABT AK] − k7r [IRAK1p∗ − T RAF 6 − T ABT AK]) + (k7cat [IRAK1p∗ − T RAF 6 − T ABT AK]) 13) Temporal variation in the concentration of the reaction species TABTAK: d[T ABT AK] = dt − (k7f [IRAK1p∗ − T RAF 6][T ABT AK] − k7r [IRAK1p∗ − T RAF 6 − T ABT AK]) + (k8 [T ABT AKp∗ ]) 14) Temporal variation in the concentration of the complex IRAK1p∗ -TRAF6-TABTAK: d[IRAK1p∗ − T RAF 6 − T ABT AK] = dt (k7f [IRAK1p∗ − T RAF 6][T ABT AK] − k7r [IRAK1p∗ − T RAF 6 − T ABT AK]) − (k7cat [IRAK1p∗ − T RAF 6 − T ABT AK]) 8 15) Temporal variation in the concentration of the reaction species TABTAKp∗ : d[T ABT AKp∗ ] = dt (k7cat [IRAK1p∗ − T RAF 6 − T ABT AK]) − (k8 [T ABT AKp∗ ]) − (k9f [T ABT AKp∗ ][M KK4/7] − k9r [T ABT AKp∗ − M KK4/7]) + (k9cat [T ABT AKp∗ − M KK4/7]) 16) Temporal variation in the concentration of the reaction species MKK4/7: d[M KK4/7] = dt − (k9f [T ABT AKp∗ ][M KK4/7] − k9r [T ABT AKp∗ − M KK4/7]) + (k10 [M KK4/7p∗ ]) 17) Temporal variation in the concentration of the complex TABTAKp∗ -MKK4/7: d[T ABT AKp∗ − M KK4/7] = dt ∗ (k9f [T ABT AKp ][M KK4/7] − k9r [T ABT AKp∗ − M KK4/7]) − (k9cat [T ABT AKp∗ − M KK4/7]) 18) Temporal variation in the concentration of the reaction species MKK4/7p∗ : d[M KK4/7p∗ ] = dt (k9cat [T ABT AKp∗ − M KK4/7]) − (k10 [M KK4/7p∗ ]) − (k11f [M KK4/7p∗ ][JN K] − k11r [M KK4/7p∗ − JN K]) + (k11cat [M KK4/7p∗ − JN K]) 19) Temporal variation in the concentration of the reaction species JNK: d[JN K] = dt − (k11f [M KK4/7p∗ ][JN K] − k11r [M KK4/7p∗ − JN K]) + (k12 [JN Kp∗ ]) 20) Temporal variation in the concentration of the complex MKK4/7p∗ -JNK: d[M KK4/7p∗ − JN K] = dt ∗ (k11f [M KK4/7p ][JN K] − k11r [M KK4/7p∗ − JN K]) + (k11cat [M KK4/7p∗ − JN K]) 21) Temporal variation in the concentration of the reaction species JNKp∗ : d[JN Kp∗ ] = dt (k11cat [M KK4/7p∗ − JN K]) − (k12 [JN Kp∗ ]) − (k13f [JN Kp∗ ] − k13r [JN Kp∗ n]) 22) Temporal variation in the concentration of the reaction species JNKp∗ n: d[JN Kp∗ n] = dt (k13f [JN Kp∗ ] − k13r [JN Kp∗ n]) − (k44f [JN Kp∗ n][AP 1n] − k44r [JN Kp∗ n − AP 1n]) 9 23) Temporal variation in the concentration of the reaction species MKK3/6: d[M KK3/6] = dt − (k14f [T ABT AKp∗ ][M KK3/6] − k14r [T ABT AKp∗ − M KK3/6]) + (k15 [M KK3/6p∗ ]) 24) Temporal variation in the concentration of the complex TABTAKp∗ -MKK3/6: d[T ABT AKp∗ − M KK3/6] = dt ∗ (k14f [T ABT AKp ][M KK3/6] − k14r [T ABT AKp∗ − M KK3/6]) − (k14cat [T ABT AKp∗ − M KK3/6]) 25) Temporal variation in the concentration of the reaction species MKK3/6-p∗ : d[M KK3/6p∗ ] = dt (k14cat [T ABT AKp∗ − M KK3/6]) − (k15 [M KK3/6p∗ ]) − (k16f [M KK3/6p∗ ][P 38] − k16r [M KK3/6p∗ − P 38]) + (k16cat [M KK3/6p∗ − P 38]) 26) Temporal variation in the concentration of the reaction species P38: d[M KK3/6p∗ ] = dt − (k16f [M KK3/6p∗ ][P 38] − k16r [M KK3/6p∗ − P 38]) + (k17 [P 38p∗ ]) 27) Temporal variation in the concentration of the complex MKK3/6p∗ -P38: d[M KK3/6p∗ − P 38] = dt (k16f [M KK3/6p∗ ][P 38] − k16r [M KK3/6p∗ − P 38]) − (k16cat [M KK3/6p∗ − P 38]) 28) Temporal variation in the concentration of the reaction species P38p∗ : d[P 38p∗ ] = dt (k16cat [M KK3/6p∗ − P 38]) − (k17 [P 38p∗ ]) − (k18f [P 38p∗ ] − k18r [P 38p∗ n]) 29) Temporal variation in the concentration of the reaction species P38p∗ n: d[P 38p∗ n] = dt (k18f [P 38p∗ ] − k18r [P 38p∗ n]) − (k45f [P 38p∗ n][AP 1n] − k45r [P 38p∗ n − AP 1n]) 30) Temporal variation in the concentration of the reaction species IKKc: d[IKKc] = dt − (k19f [T ABT AKp∗ ][IKKc] − k19r [T ABT AKp∗ − IKKc]) + (k20 [IKKcp∗ ]) 10 31) Temporal variation in the concentration of the complex TABTAKp∗ -IKKc: d[T ABT AKp∗ − IKKc] = dt (k19f [T ABT AKp∗ ][IKKc] − k19r [T ABT AKp∗ − IKKc]) − (k19cat [T ABT AKp∗ − IKKc]) 32) Temporal variation in the concentration of the reaction species IKKcp∗ : d[IKKcp∗ ] = dt (k19cat [T ABT AKp∗ − IKKc]) − (k20 [IKKcp∗ ]) − (k21f [IKKcp∗ ][IκB − N F κB] − k21r [IKKcp∗ − IκB − N F κB]) + (k21cat [IKKcp∗ − IκB − N F κB]) − (k23f [IKKcp∗ ][T pL2] − k23r [IKKcp∗ T pL2]) + (k23cat [IKKcp∗ T pL2]) 33) Temporal variation in the concentration of the complex IκB-NFκB: d[IκB − N F κB] = dt − (k21f [IKKcp∗ ][IκB − N F κB] − k21r [IKKcp∗ − IκB − N F κB]) 34) Temporal variation in the concentration of the complex IKKcp∗ -IκB-NFκB: d[IKKcp∗ − IκB − N F κB] = dt ∗ (k21f [IKKcp ][IκB − N F κB] − k21r [IKKcp∗ − IκB − N F κB]) 35) Temporal variation in the concentration of the reaction species IκB: d[IκB] = (k21cat [IKKcp∗ − IκB − N F κB]) dt 36) Temporal variation in the concentration of the reaction species NFκB: d[N F κB] = (k21cat [IKKcp∗ − IκB − N F κB]) − (k22f [N F κB] − k22r [N F κBn]) dt 37) Temporal variation in the concentration of the reaction species NFκBn: d[N F κBn] = (k22f [N F κB] − k22r [N F κBn]) dt 38) Temporal variation in the concentration of the reaction species TpL2: d[T pL2] = −(k23f [IKKcp∗ ][T pL2] − k23r [IKKcp∗ T pL2]) + (k24 [T pL2∗]) dt 39) Temporal variation in the concentration of the complex IKKcp∗ -TpL2: d[IKKcp∗ − T pL2] = (k23f [IKKcp∗ ][T pL2]−k23r [IKKcp∗ T pL2])+(k24 [T pL2p∗])−(k23cat [IKKcp∗ T pL2]) dt 40) Temporal variation in the concentration of the reaction species TpL2p∗ : 11 d[T pL2p∗ ] = dt (k23cat [IKKcp∗ T pL2]) − (k24 [T pL2p∗]) − (k25f [T pL2p∗][M KK1/2] − k25r [T pL2p∗ − M KK1/2]) − (k25cat [T pL2p∗ − M KK1/2]) 41) Temporal variation in the concentration of the reaction species MKK1/2: d[M KK1/2] = dt − (k25f [T pL2p∗][M KK1/2] − k25r [T pL2p∗ − M KK1/2]) + (k26 [M KK1/2p∗]) 42) Temporal variation in the concentration of the complex TpL2p∗ -MKK1/2: d[T pL2p∗ − M KK1/2] = dt (k25f [T pL2p∗][M KK1/2] − k25r [T pL2p∗ − M KK1/2]) − (k25cat [T pL2p∗ − M KK1/2]) 43) Temporal variation in the concentration of the reaction species MKK1/2p∗ : d[M KK1/2p∗ ] = dt (k25cat [T pL2p∗ − M KK1/2]) − (k26 [M KK1/2p∗]) − (k27f [M KK1/2p∗][ERK] − k27r [M KK1/2p∗ERK]) + (k27cat [M KK1/2p∗ERK]) 44) Temporal variation in the concentration of the reaction species ERK: d[ERK] = dt − (k27f [M KK1/2p∗][ERK] − k27r [M KK1/2p∗ERK]) + (k28 [ERKp∗]) 45) Temporal variation in the concentration of the complex MKK1/2p∗ -ERK: d[M KK1/2p∗ − ERK] = dt (k27f [M KK1/2p∗][ERK] − k27r [M KK1/2p∗ERK]) − (k27cat [M KK1/2p∗ERK]) 46) Temporal variation in the concentration of the reaction species ERKp∗ : d[ERKp∗ ] = dt (k27cat [M KK1/2p∗ERK]) − (k28 [ERKp∗]) − (k29f [ERKp∗] − k29r [ERKp∗n]) 47) Temporal variation in the concentration of the reaction species ERKp∗ n: d[ERKp∗ n] = dt (k29f [ERKp∗] − k29r [ERKp∗n]) − (k46f [ERKp∗n][AP 1n] − k46r [ERKp∗n − AP 1n]) 12 48) Temporal variation in the concentration of the reaction species I1 (hypothetical intermediary/adapter molecule 1): d[I1] = −(k30f [Ra][I1] − k30r [RaI1]) dt 49) Temporal variation in the concentration of the complex Ra-I1: d[RaI1] = (k30f [Ra][I1] − k30r [RaI1]) dt 50) Temporal variation in the concentration of the reaction species I2 (hypothetical intermediary/adapter molecule 2): d[I2] = −(k31f [RaI1][I2] − k31r [RaI1I2]) dt 51) Temporal variation in the concentration of the complex Ra-I1-I2: d[RaI1I2] = (k31f [RaI1][I2] − k31r [RaI1I2]) dt 52) Temporal variation in the concentration of the reaction species I3 (hypothetical intermediary/adapter molecule 3): d[I3] = −(k32f [RaI1I2][I3] − k32r [RaI1I2I3]) dt 53) Temporal variation in the concentration of the complex Ra-I1-I2-I3: d[RaI1I2I3] = (k32f [RaI1I2][I3] − k32r [RaI1I2I3]) dt 54) Temporal variation in the concentration of the reaction species TRAM: d[RaI1I2I3] = −(k33f [RaI1I2I3][T RAM ] − k33r [RaI1I2I3T ]) dt 55) Temporal variation in the concentration of the complex Ra-I1-I2-I3-TRAM: d[RaI1I2I3T ] = (k33f [RaI1I2I3][T RAM ] − k33r [RaI1I2I3T ]) dt 56) Temporal variation in the concentration of the reaction species TRIF: d[T RIF ] = −(k34f [RaI1I2I3T ][T RIF ] − k34r [RaI1I2I3T T ]) dt 57) Temporal variation in the concentration of the complex Ra-I1-I2-I3-TRAM-TRIF: d[RaI1I2I3T T ] = (k34f [RaI1I2I3T ][T RIF ] − k34r [RaI1I2I3T T ]) dt 58) Temporal variation in the concentration of the reaction species RIP1: d[RIP 1] = −(k35f [RaI1I2I3T T ][RIP 1] − k35r [RaI1I2I3T T R]) dt 59) Temporal variation in the concentration of the complex Ra-I1-I2-I3-TRAM-TRIF-RIP1: d[RaI1I2I3T T R] = (k35f [RaI1I2I3T T ][RIP 1] − k35r [RaI1I2I3T T R]) dt 13 60) Temporal variation in the concentration of the reaction species AIP1: d[AIP 1] = −(k36f [RaI1I2I3T T R][AIP 1] − k36r [RaI1I2I3T T RA]) dt 61) Temporal variation in the concentration of the complex Ra-I1-I2-I3-TRAM-TRIF-RIP1-AIP1: d[RaI1I2I3T T RA] = (k36f [RaI1I2I3T T R][AIP 1] − k36r [RaI1I2I3T T RA]) dt 62) Temporal variation in the concentration of the complex Ra-I1-I2-I3-TRAM-TRIF-RIP1-AIP1TRAF6: d[RaI1I2I3T T RAT ] = (k37f [RaI1I2I3T T RA][T RAF 6] − k37r [RaI1I2I3T T RAT ]) dt 63) Temporal variation in the concentration of the complex Ra-I1-I2-I3-TRAM-TRIF-TRAF6: d[RaI1I2I3T T T ] = (k38f [RaI1I2I3T T ][T RAF 6] − k38r [RaI1I2I3T T T ]) dt 64) Temporal variation in the concentration of the complex Ra-I1-I2-I3-TRAM-TRIF-TBK1: d[RaI1I2I3T T T B] = (k39f [RaI1I2I3T T ][T BK1] − k39r [RaI1I2I3T T T B]) dt 65) Temporal variation in the concentration of the reaction species TBK1: d[T BK1] = −(k39f [RaI1I2I3T T ][T BK1] − k39r [RaI1I2I3T T T B]) dt 66) Temporal variation in the concentration of the reaction species IRF1: d[IRF 1] = −(k40f [RaI1I2I3T T T B][IRF 1] − k40r [RaI1I2I3T T T BI]) + (k41 [IRF p∗ ]) dt 67) Temporal variation in the concentration of the complex Ra-I1-I2-I3-TRAM-TRIF-TBK1-IRF1: d[RaI1I2I3T T T BI] = (k40f [RaI1I2I3T T T B][IRF 1]−k40r [RaI1I2I3T T T BI])+(k40cat [RaI1I2I3T T T BI]) dt 68) Temporal variation in the concentration of the reaction species IRF1p∗ : d[IRF p∗ ] = (k41 [IRF p∗ ]) − (k41 [IRF p∗ ]) − 2(k42f [IRF p∗ ]2 − k42r [IRF p∗2 ]) dt 69) Temporal variation in the concentration of the reaction species IRF1p∗2 : d[IRF p∗2 ] = 2(k42f [IRF p∗ ]2 − k42r [IRF p∗2 ]) − (k43f [IRF p∗2 ] − k43r [IRF p∗2 n]) dt 70) Temporal variation in the concentration of the reaction species IRF1p∗2 n: d[IRF p∗2 n] = (k43f [IRF p∗2 ] − k43r [IRF p∗2 n]) dt 71) Temporal variation in the concentration of the reaction species AP1n: 14 d[AP 1n] = dt − (k44f [JN Kp∗n][AP 1n] − k44r [JN Kp∗n − AP 1n]) − (k45f [P 38p∗n][AP 1n] − k45r [P 38p∗n − AP 1n]) − (k46f [ERKp∗n][AP 1n] − k46r [ERKp∗n − AP 1n]) 72) Temporal variation in the concentration of the complex JNKp∗2 n-AP1n: d[JN Kp∗ n − AP 1n] = (k44f [JN Kp∗ n][AP 1n] − k44r [JN Kp∗ n − AP 1n]) dt 73) Temporal variation in the concentration of the complex P38p∗2 n-AP1n: d[P 38p∗ n − AP 1n] = (k45f [P 38p∗ n][AP 1n] − k45r [P 38p∗ n − AP 1n]) dt 74) Temporal variation in the concentration of the complex ERKp∗2 n-AP1n: d[ERKp∗ n − AP 1n] = (k46f [ERKp∗n][AP 1n] − k46r [ERKp∗n − AP 1n]) dt 75) Temporal expression in the transcriptional readout Tnf -α: d[T nf α] = dt F κBn]V B1 + β1 Kβ1V[N B1 +[N F κBn]]V B1 − kd T nf [T nf α] T maxT nf ∗ ρT nf [N F κBn]V B1 1n]V A1 + β 1 + α1 Kβ1V[AP 1 Kβ1V B1 +[N F κBn]]V B1 A1 +[AP 1n]V A1 α1 [AP 1n]V A1 Kβ1V A1 +[AP 1n]V A1 76) Temporal expression in the transcriptional readout Cxcl10 : d[Cxcl10] = dt F κBn]V B2 + β2 Kβ2V[N B2 +[N F κBn]]V B2 − kd Cxc[Cxcl10] T maxCxc ∗ ρCxc [IRF2 n]V A2 [N F κBn]V B2 1 + α2 Kβ2V A2 +[IRF2 n]V A2 + β2 Kβ2V B2 +[N F κBn]]V B2 α2 [IRF2 n]V A2 Kβ2V A2 +[IRF2 n]V A2 Importantly, two major assumptions underly our mathematical representation of the biochemical reaction mechanism: a The network model is assumed to represent a “well stirred” reaction system embedded within a spatial homogeneous cell environment. b The reaction variables (molecular concentrations) are assumed to be continuous functions of time, which is valid only under the assumption that the number of molecules of each species in the reaction volume is sufficiently large. In general, in the context of our dynamical model, it is more appropriate to think of the trajectories displayed by the signal transduction system as being representative of the average dynamics of the network over an ensemble of cells (i.e. a macrophage culture). 15
© Copyright 2026 Paperzz