Kingdom of Saudi Arabia Ministry of Higher Education Majmaah University College of Engineering EE & CEN Logic Design (CE 207, CE 213) Chapter No. 2 – Part No. 2 Problem 2.14: Implement the Boolean Function F xy x' y ' y ' z Part (a): with AND, OR and Inverter Gates F xy x' y ' y ' z Part (b): with OR and Inverter Gates F xy x' y ' y ' z F ( x' y ' )'( x y )'( y z ' )' Part (c): with AND and Inverter Gates F xy x' y ' y ' z F [( xy)' ( x' y ' )' ( y ' z )' ]' Page 1 of 8 Part (d): with NAND and Inverter Gates F xy x' y ' y ' z F [( xy)' ( x' y ' )' ( y ' z )' ]' Part (e): with NOR and Inverter Gates F xy x' y ' y ' z F ( x' y ' )'( x y )'( y z ' )' Problem 2.17: Obtain the Truth Table of the following function and express each function in sum-of-minterms and product-of-maxterms form: Page 2 of 8 ( xy z )( y xz) Part (a): x 0 0 0 0 1 1 1 1 y 0 0 1 1 0 0 1 1 z 0 1 0 1 0 1 0 1 xy 0 0 0 0 0 0 1 1 (xy + z) 0 1 0 1 0 1 1 1 xz 0 0 0 0 0 1 0 1 (y + xz) 0 0 1 1 0 1 1 1 (xy + z)(y + xz) 0 0 0 1 0 1 1 1 F ( x, y, z ) (3,5,6,7) Sum of Minterms: Product of Maxterm: F ( x, y, z ) (0,1,2,4) Part (b): ( x y ' )( y ' z ) x 0 0 0 0 1 1 1 1 Sum of Minterms: y 0 0 1 1 0 0 1 1 z 0 1 0 1 0 1 0 1 y’ 1 1 0 0 1 1 0 0 (x + y’) 1 1 0 0 1 1 1 1 (y’ + z) 1 1 0 1 1 1 0 1 (x + y’)(y’ + z) 1 1 0 0 1 1 0 1 F ( x, y, z ) (0,1,4,5,7) Product of Maxterms: F ( x, y, z ) (2,3,6) Problem 2.18: For the Boolean function: F xy' z x' y ' z w' xy wx' y wxy Page 3 of 8 Part (a): Obtain the Truth Table of F w x y z w’ x’ y’ xy’z 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 Part (b): x’y’z 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 w’xy 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 wx’y 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 Wxy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 F 0 1 0 0 0 1 1 1 0 1 1 1 0 1 1 1 Draw the Logic Diagram, using the original Boolean Expression F xy' z x' y ' z w' xy wx' y wxy Page 4 of 8 Part (c): Use Boolean Algebra to simplify the function to a minimum number of literals F xy' z x' y ' z w' xy wx' y wxy F xy' z x' y ' z w' xy wxy wx' y F y ' z ( x x) xy( w' w) wx' y F y ' z (1) xy(1) wx' y F y ' z xy wx' y F y ' z y ( x x' w) F y ' z y ( x w) F y ' z xy wy F wy xy y ' z Part (d): Obtain the Truth Table of the function from the simplified expression and show that it is the same as the one in Part (a) F wy xy y ' z w 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 x 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 y 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 z 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 y’ 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 wy 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 xy 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 y’z 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 F 0 1 0 0 0 1 1 1 0 1 1 1 0 1 1 1 Page 5 of 8 Part (e): Draw the Logic Diagram from the simplified expression and compare the total number of gates with the diagram of Part (b) Note: In Part (b), there are three (03) Inverter, five (05) 3-Inputs AND, one (01) 5-Inputs OR Gates, while in Part (e), there are one (01) Inverter, three (03) 3-inputs AND, one (01) 3-Inputs OR Gates. Problem 2.20: Part (a): Express the complement of the functions in sum of minterms form: F ( A, B, C , D) (3,5,9,11,15) F ' ( A, B, C , D) (0,1,2,4,6,7,8,10,12,13,14) Problem 2.22: Part (a): Convert each of the following expression into sum of products and product of sums: ( AB C )( B C ' D) ABB BC ABC ' D CC' D AB BC ABC ' D (0) D BC AB ABC ' D BC AB(1 C ' D) BC AB(1) BC AB B(C A) Part (b): Sum of Products Product of Sums x' x( x y ' )( y z ' ) x' x[( x y ' )( y z ' )] ( x' x)[ x'( x y ' )( y z ' )] DeMorgan Law Page 6 of 8 (1)[ x'( x y ' )( y z ' )] [ x'( x y ' )( y z ' )] Using DeMorgan Law, we get ( x' x y' )( x' y z ' ) Product of Sums x' x' x' y x' z ' xx' xy xz' x' y ' yy ' y ' z ' x' x' y x' z '0 xy xz' x' y '0 y ' z ' x' x' y xy x' z ' xz' x' y ' y ' z ' x' y ( x' x) z ' ( x' x) x' y ' y ' z ' x' y (1) z ' (1) x' y ' y ' z ' x' y z ' x' y ' y ' z ' x' y z ' y ' z ' x' y ' x' y z ' (1 y ' ) x' y ' x' y z ' (1) x' y ' x' x' y ' y z ' x' (1 y ' ) y z ' x' (1) y z ' x' y z ' Problem 2.28: Write Boolean Expression and construct the Truth Table describing the output of the circuit described by the following logic diagram y [(a (bcd )' e)' ]' y a(bcd )' e y a(b'c' d ' )e y ab' e ac' e ad ' e DeMorgan Law Page 7 of 8 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 b 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 c 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 d 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 e 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 b’ 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 c’ 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 d’ 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 ab’e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 ac’e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 ad’e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 Page 8 of 8
© Copyright 2026 Paperzz