Logic Design

Kingdom of Saudi Arabia
Ministry of Higher Education
Majmaah University
College of Engineering
EE & CEN
Logic Design (CE 207, CE 213)
Chapter No. 2 – Part No. 2
Problem 2.14:
Implement the Boolean Function
F  xy  x' y ' y ' z
Part (a):
with AND, OR and Inverter Gates
F  xy  x' y ' y ' z
Part (b):
with OR and Inverter Gates
F  xy  x' y ' y ' z
 F  ( x' y ' )'( x  y )'( y  z ' )'
Part (c):
with AND and Inverter Gates
F  xy  x' y ' y ' z
 F  [( xy)' ( x' y ' )' ( y ' z )' ]'
Page 1 of 8
Part (d):
with NAND and Inverter Gates
F  xy  x' y ' y ' z
 F  [( xy)' ( x' y ' )' ( y ' z )' ]'
Part (e):
with NOR and Inverter Gates
F  xy  x' y ' y ' z
 F  ( x' y ' )'( x  y )'( y  z ' )'
Problem 2.17:
Obtain the Truth Table of the following function and express each
function in sum-of-minterms and product-of-maxterms form:
Page 2 of 8
( xy  z )( y  xz)
Part (a):
x
0
0
0
0
1
1
1
1
y
0
0
1
1
0
0
1
1
z
0
1
0
1
0
1
0
1
xy
0
0
0
0
0
0
1
1
(xy + z)
0
1
0
1
0
1
1
1
xz
0
0
0
0
0
1
0
1
(y + xz)
0
0
1
1
0
1
1
1
(xy + z)(y + xz)
0
0
0
1
0
1
1
1
F ( x, y, z )  (3,5,6,7)
Sum of Minterms:
Product of Maxterm: F ( x, y, z )  (0,1,2,4)
Part (b):
( x  y ' )( y ' z )
x
0
0
0
0
1
1
1
1
Sum of Minterms:
y
0
0
1
1
0
0
1
1
z
0
1
0
1
0
1
0
1
y’
1
1
0
0
1
1
0
0
(x + y’)
1
1
0
0
1
1
1
1
(y’ + z)
1
1
0
1
1
1
0
1
(x + y’)(y’ + z)
1
1
0
0
1
1
0
1
F ( x, y, z )  (0,1,4,5,7)
Product of Maxterms: F ( x, y, z )  (2,3,6)
Problem 2.18: For the Boolean function:
F  xy' z  x' y ' z  w' xy  wx' y  wxy
Page 3 of 8
Part (a):
Obtain the Truth Table of F
w x y z
w’ x’ y’ xy’z
0 0 0 0
1 1 1
0
0 0 0 1
1 1 1
0
0 0 1 0
1 1 0
0
0 0 1 1
1 1 0
0
0 1 0 0
1 0 1
0
0 1 0 1
1 0 1
1
0 1 1 0
1 0 0
0
0 1 1 1
1 0 0
0
1 0 0 0
0 1 1
0
1 0 0 1
0 1 1
0
1 0 1 0
0 1 0
0
1 0 1 1
0 1 0
0
1 1 0 0
0 0 1
0
1 1 0 1
0 0 1
1
1 1 1 0
0 0 0
0
1 1 1 1
0 0 0
0
Part (b):
x’y’z
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
w’xy
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
wx’y
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
Wxy
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
F
0
1
0
0
0
1
1
1
0
1
1
1
0
1
1
1
Draw the Logic Diagram, using the original Boolean Expression
F  xy' z  x' y ' z  w' xy  wx' y  wxy
Page 4 of 8
Part (c):
Use Boolean Algebra to simplify the function to a minimum number of
literals
F  xy' z  x' y ' z  w' xy  wx' y  wxy
 F  xy' z  x' y ' z  w' xy  wxy  wx' y
 F  y ' z ( x  x)  xy( w' w)  wx' y
 F  y ' z (1)  xy(1)  wx' y
 F  y ' z  xy  wx' y
 F  y ' z  y ( x  x' w)
 F  y ' z  y ( x  w)
 F  y ' z  xy  wy
 F  wy  xy  y ' z
Part (d): Obtain the Truth Table of the function from the simplified expression and show
that it is the same as the one in Part (a)
 F  wy  xy  y ' z
w
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
x
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
y
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
z
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
y’
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
wy
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
xy
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
y’z
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
F
0
1
0
0
0
1
1
1
0
1
1
1
0
1
1
1
Page 5 of 8
Part (e):
Draw the Logic Diagram from the simplified expression and compare the
total number of gates with the diagram of Part (b)
Note:
In Part (b), there are three (03) Inverter, five (05) 3-Inputs AND, one (01)
5-Inputs OR Gates, while in Part (e), there are one (01) Inverter, three (03)
3-inputs AND, one (01) 3-Inputs OR Gates.
Problem 2.20:
Part (a):
Express the complement of the functions in sum of minterms form:
F ( A, B, C , D)  (3,5,9,11,15)
F ' ( A, B, C , D)  (0,1,2,4,6,7,8,10,12,13,14)
Problem 2.22:
Part (a):
Convert each of the following expression into sum of products and
product of sums:
( AB  C )( B  C ' D)
 ABB  BC  ABC ' D  CC' D
 AB  BC  ABC ' D  (0) D
 BC  AB  ABC ' D
 BC  AB(1  C ' D)
 BC  AB(1)
 BC  AB
 B(C  A)
Part (b):
Sum of Products
Product of Sums
x' x( x  y ' )( y  z ' )
 x' x[( x  y ' )( y  z ' )]
 ( x' x)[ x'( x  y ' )( y  z ' )]
DeMorgan Law
Page 6 of 8
 (1)[ x'( x  y ' )( y  z ' )]
 [ x'( x  y ' )( y  z ' )]
Using DeMorgan Law, we get
 ( x' x  y' )( x' y  z ' )
Product of Sums
 x' x' x' y  x' z ' xx' xy  xz' x' y ' yy ' y ' z '
 x' x' y  x' z '0  xy  xz' x' y '0  y ' z '
 x' x' y  xy  x' z ' xz' x' y ' y ' z '
 x' y ( x' x)  z ' ( x' x)  x' y ' y ' z '
 x' y (1)  z ' (1)  x' y ' y ' z '
 x' y  z ' x' y ' y ' z '
 x' y  z ' y ' z ' x' y '
 x' y  z ' (1  y ' )  x' y '
 x' y  z ' (1)  x' y '
 x' x' y ' y  z '
 x' (1  y ' )  y  z '
 x' (1)  y  z '
 x' y  z '
Problem 2.28:
Write Boolean Expression and construct the Truth Table describing the
output of the circuit described by the following logic diagram
y  [(a (bcd )' e)' ]'
 y  a(bcd )' e
 y  a(b'c' d ' )e
 y  ab' e  ac' e  ad ' e
DeMorgan Law
Page 7 of 8
a
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
b
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
c
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
d
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
e
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
b’
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
c’
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
d’
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
ab’e
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
ac’e
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
1
0
1
0
0
0
0
ad’e
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
y
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
Page 8 of 8