*Tables give the key values of distribution for example you can use a table out when an estimate z distribution 95% of sample estimates are within 1.96 standard errors, 5% are outside *If you use s then you do not have an accurate value of standard error if n is small, the df takes this into account. . Statistical tables page 1 of 4, You will be given these tables in week 11 and final exam Two sided (tail) t-table for confidence interval and for testing a two sided hypothesis test This table can be used in many situations including the following situation where you test the following hypothesis population mean using the sample mean H0: μ = μ0 ( μ0 is what is given in the question you do not know it is true) H1: μ ≠ μ0 ( you are checking if μ is different to μ0) Example for when α=0.05 And test stat has a Z distribution Go to row z(the bottom row) and column 0.05 And find the critical value 1.96 Do not reject H0 region The z chart has the same information P(Z>1.96) = 0.025 reject H0 regions If the null hypothesis is true the probability the test statistic is in the shaded region is α, The critical value is what comes from the table P(Z<-1.96) = 0.025 Many books do not use diagrams they use the international notation P(Z>1.96) = 0.025 so Z0.025=1.96 P(Z<-1.96) = 0.025 so -Z0.025=-1.96 For a confidence interval (CI) before you get the sample There is a (1-α)×100% probability that the parameter is within “critical value”דstandard error” of the statistic. significance level α is the column df 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 40 50 60 80 99 100 1000 ∞(z*) 0.5 0.4 0.3 0.2 0.1 0.05 ±1.000 ±0.817 ±0.765 ±0.741 ±0.727 ±0.718 ±0.711 ±0.706 ±0.703 ±0.700 ±0.697 ±0.696 ±0.694 ±0.692 ±0.691 ±0.690 ±0.689 ±0.688 ±0.688 ±0.687 ±0.686 ±0.686 ±0.685 ±0.685 ±0.684 ±0.684 ±0.684 ±0.683 ±0.683 ±0.683 ±0.681 ±0.679 ±0.679 ±0.678 ±0.677 ±0.677 ±0.675 ±0.674 ±1.376 ±1.061 ±0.979 ±0.941 ±0.920 ±0.906 ±0.896 ±0.889 ±0.883 ±0.879 ±0.876 ±0.873 ±0.870 ±0.868 ±0.866 ±0.865 ±0.863 ±0.862 ±0.861 ±0.860 ±0.859 ±0.858 ±0.858 ±0.857 ±0.856 ±0.856 ±0.855 ±0.855 ±0.854 ±0.854 ±0.851 ±0.849 ±0.848 ±0.846 ±0.845 ±0.845 ±0.842 ±0.841 ±1.963 ±1.386 ±1.250 ±1.190 ±1.156 ±1.134 ±1.119 ±1.108 ±1.100 ±1.093 ±1.088 ±1.083 ±1.079 ±1.076 ±1.074 ±1.071 ±1.069 ±1.067 ±1.066 ±1.064 ±1.063 ±1.061 ±1.060 ±1.059 ±1.058 ±1.058 ±1.057 ±1.056 ±1.055 ±1.055 ±1.050 ±1.047 ±1.045 ±1.043 ±1.042 ±1.042 ±1.037 ±1.036 ±3.078 ±1.886 ±1.638 ±1.533 ±1.476 ±1.440 ±1.415 ±1.397 ±1.383 ±1.372 ±1.363 ±1.356 ±1.350 ±1.345 ±1.341 ±1.337 ±1.333 ±1.330 ±1.328 ±1.325 ±1.323 ±1.321 ±1.319 ±1.318 ±1.316 ±1.315 ±1.314 ±1.313 ±1.311 ±1.310 ±1.303 ±1.299 ±1.296 ±1.292 ±1.29 ±1.290 ±1.282 ±1.282 ±6.314 ±2.920 ±2.353 ±2.132 ±2.015 ±1.943 ±1.895 ±1.860 ±1.833 ±1.812 ±1.796 ±1.782 ±1.771 ±1.761 ±1.753 ±1.746 ±1.740 ±1.734 ±1.729 ±1.725 ±1.721 ±1.717 ±1.714 ±1.711 ±1.708 ±1.706 ±1.703 ±1.701 ±1.699 ±1.697 ±1.684 ±1.676 ±1.671 ±1.664 ±1.66 ±1.660 ±1.646 ±1.645 50%CI 60%CI 70%CI 80%CI 90%CI 0.01 0.005 0.002 0.001 ±12.706 ±15.895 ±31.821 ±4.303 ±4.849 ±6.965 ±3.182 ±3.482 ±4.541 ±2.776 ±2.999 ±3.747 ±2.571 ±2.757 ±3.365 ±2.447 ±2.612 ±3.143 ±2.365 ±2.517 ±2.998 ±2.306 ±2.449 ±2.896 ±2.262 ±2.398 ±2.821 ±2.228 ±2.359 ±2.764 ±2.201 ±2.328 ±2.718 ±2.179 ±2.303 ±2.681 ±2.160 ±2.282 ±2.650 ±2.145 ±2.264 ±2.624 ±2.131 ±2.249 ±2.602 ±2.120 ±2.235 ±2.583 ±2.110 ±2.224 ±2.567 ±2.101 ±2.214 ±2.552 ±2.093 ±2.205 ±2.539 ±2.086 ±2.197 ±2.528 ±2.080 ±2.189 ±2.518 ±2.074 ±2.183 ±2.508 ±2.069 ±2.177 ±2.500 ±2.064 ±2.172 ±2.492 ±2.060 ±2.167 ±2.485 ±2.056 ±2.162 ±2.479 ±2.052 ±2.158 ±2.473 ±2.048 ±2.154 ±2.467 ±2.045 ±2.150 ±2.462 ±2.042 ±2.147 ±2.457 ±2.021 ±2.123 ±2.423 ±2.009 ±2.109 ±2.403 ±2.000 ±2.099 ±2.390 ±1.990 ±2.088 ±2.374 ±1.984 ±2.081 ±2.365 ±1.984 ±2.081 ±2.364 ±1.962 ±2.056 ±2.330 ±1.960 ±2.054 ±2.326 ±63.657 ±9.925 ±5.841 ±4.604 ±4.032 ±3.707 ±3.499 ±3.355 ±3.250 ±3.169 ±3.106 ±3.055 ±3.012 ±2.977 ±2.947 ±2.921 ±2.898 ±2.878 ±2.861 ±2.845 ±2.831 ±2.819 ±2.807 ±2.797 ±2.787 ±2.779 ±2.771 ±2.763 ±2.756 ±2.750 ±2.704 ±2.678 ±2.660 ±2.639 ±2.626 ±2.626 ±2.581 ±2.576 ±127.321 ±14.089 ±7.453 ±5.598 ±4.773 ±4.317 ±4.029 ±3.833 ±3.690 ±3.581 ±3.497 ±3.428 ±3.372 ±3.326 ±3.286 ±3.252 ±3.222 ±3.197 ±3.174 ±3.153 ±3.135 ±3.119 ±3.104 ±3.091 ±3.078 ±3.067 ±3.057 ±3.047 ±3.038 ±3.030 ±2.971 ±2.937 ±2.915 ±2.887 ±2.871 ±2.871 ±2.813 ±2.807 ±318.309 ±22.327 ±10.215 ±7.173 ±5.893 ±5.208 ±4.785 ±4.501 ±4.297 ±4.144 ±4.025 ±3.930 ±3.852 ±3.787 ±3.733 ±3.686 ±3.646 ±3.610 ±3.579 ±3.552 ±3.527 ±3.505 ±3.485 ±3.467 ±3.450 ±3.435 ±3.421 ±3.408 ±3.396 ±3.385 ±3.307 ±3.261 ±3.232 ±3.195 ±3.175 ±3.174 ±3.098 ±3.090 ±636.619 ±31.599 ±12.924 ±8.610 ±6.869 ±5.959 ±5.408 ±5.041 ±4.781 ±4.587 ±4.437 ±4.318 ±4.221 ±4.140 ±4.073 ±4.015 ±3.965 ±3.922 ±3.883 ±3.850 ±3.819 ±3.792 ±3.768 ±3.745 ±3.725 ±3.707 ±3.690 ±3.674 ±3.659 ±3.646 ±3.551 ±3.496 ±3.460 ±3.416 ±3.391 ±3.390 ±3.300 ±3.291 95%CI 99%CI 99.5%CI 99.8%CI 99.9%CI 1 0.04 96%CI 0.02 98%CI Statistical tables page 2 of 4, You will be given these tables in week 11 test and final exam t One sided t table (upper tail t-table, most books only give you this upper t-table value, if a book says n-1,α go to row n-1, column α) If you use s then you do not have an accurate value of standard error if n is small, the df takes this into account This table can be used in many situations including the following situation where you need to use the following null and alternate hypothesis for the a single population mean H0: μ = μ0 ( μ0 is what is given in the question you do not know it is true) H1: μ > μ0 ( you are checking if μ more than μ0) Tips for using tables t-table, (the main z scores are at the bottom of the t-table) Example for when α=0.05 And test stat has a Z distribution Go to row z and column 0.05 And find the critical value 1.645 The critical values are given in the table below If the null hypothesis is true the probability the test statistic is above the critical value is α The z chart has the same information P(Z>1.645) = 0.05 Most books do not use diagrams they use the international notation P(Z>1.645) = 0.05 or Z0.05 = 1.645 significance level α is the column df 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 40 50 60 80 99 100 1000 ∞(z*) 0.25 0.2 0.15 0.1 0.05 0.025 0.02 0.01 0.005 0.0025 0.001 0.0005 1.000 0.817 0.765 0.741 0.727 0.718 0.711 0.706 0.703 0.700 0.697 0.696 0.694 0.692 0.691 0.690 0.689 0.688 0.688 0.687 0.686 0.686 0.685 0.685 0.684 0.684 0.684 0.683 0.683 0.683 0.681 0.679 0.679 0.678 0.677 0.677 0.675 0.674 1.376 1.061 0.979 0.941 0.920 0.906 0.896 0.889 0.883 0.879 0.876 0.873 0.870 0.868 0.866 0.865 0.863 0.862 0.861 0.860 0.859 0.858 0.858 0.857 0.856 0.856 0.855 0.855 0.854 0.854 0.851 0.849 0.848 0.846 0.845 0.845 0.842 0.841 1.963 1.386 1.250 1.190 1.156 1.134 1.119 1.108 1.100 1.093 1.088 1.083 1.079 1.076 1.074 1.071 1.069 1.067 1.066 1.064 1.063 1.061 1.060 1.059 1.058 1.058 1.057 1.056 1.055 1.055 1.050 1.047 1.045 1.043 1.042 1.042 1.037 1.036 3.078 1.886 1.638 1.533 1.476 1.440 1.415 1.397 1.383 1.372 1.363 1.356 1.350 1.345 1.341 1.337 1.333 1.330 1.328 1.325 1.323 1.321 1.319 1.318 1.316 1.315 1.314 1.313 1.311 1.310 1.303 1.299 1.296 1.292 1.29 1.290 1.282 1.282 6.314 2.920 2.353 2.132 2.015 1.943 1.895 1.860 1.833 1.812 1.796 1.782 1.771 1.761 1.753 1.746 1.740 1.734 1.729 1.725 1.721 1.717 1.714 1.711 1.708 1.706 1.703 1.701 1.699 1.697 1.684 1.676 1.671 1.664 1.66 1.660 1.646 1.645 12.706 4.303 3.182 2.776 2.571 2.447 2.365 2.306 2.262 2.228 2.201 2.179 2.160 2.145 2.131 2.120 2.110 2.101 2.093 2.086 2.080 2.074 2.069 2.064 2.060 2.056 2.052 2.048 2.045 2.042 2.021 2.009 2.000 1.990 1.984 1.984 1.962 1.960 15.895 4.849 3.482 2.999 2.757 2.612 2.517 2.449 2.398 2.359 2.328 2.303 2.282 2.264 2.249 2.235 2.224 2.214 2.205 2.197 2.189 2.183 2.177 2.172 2.167 2.162 2.158 2.154 2.150 2.147 2.123 2.109 2.099 2.088 2.081 2.081 2.056 2.054 31.821 6.965 4.541 3.747 3.365 3.143 2.998 2.896 2.821 2.764 2.718 2.681 2.650 2.624 2.602 2.583 2.567 2.552 2.539 2.528 2.518 2.508 2.500 2.492 2.485 2.479 2.473 2.467 2.462 2.457 2.423 2.403 2.390 2.374 2.365 2.364 2.330 2.326 63.657 9.925 5.841 4.604 4.032 3.707 3.499 3.355 3.250 3.169 3.106 3.055 3.012 2.977 2.947 2.921 2.898 2.878 2.861 2.845 2.831 2.819 2.807 2.797 2.787 2.779 2.771 2.763 2.756 2.750 2.704 2.678 2.660 2.639 2.626 2.626 2.581 2.576 127.321 14.089 7.453 5.598 4.773 4.317 4.029 3.833 3.690 3.581 3.497 3.428 3.372 3.326 3.286 3.252 3.222 3.197 3.174 3.153 3.135 3.119 3.104 3.091 3.078 3.067 3.057 3.047 3.038 3.030 2.971 2.937 2.915 2.887 2.871 2.871 2.813 2.807 318.309 22.327 10.215 7.173 5.893 5.208 4.785 4.501 4.297 4.144 4.025 3.930 3.852 3.787 3.733 3.686 3.646 3.610 3.579 3.552 3.527 3.505 3.485 3.467 3.450 3.435 3.421 3.408 3.396 3.385 3.307 3.261 3.232 3.195 3.175 3.174 3.098 3.090 636.619 31.599 12.924 8.610 6.869 5.959 5.408 5.041 4.781 4.587 4.437 4.318 4.221 4.140 4.073 4.015 3.965 3.922 3.883 3.850 3.819 3.792 3.768 3.745 3.725 3.707 3.690 3.674 3.659 3.646 3.551 3.496 3.460 3.416 3.391 3.390 3.300 3.291 50%CI 60%CI 70%CI 80%CI 90%CI 95%CI 96%CI 98%CI 99%CI 99.5%CI 99.8%CI 99.9%CI 2 Statistical tables page 3 of 4, You will be given these tables in week 11 and final exam One sided table (lower tail t-table) This table can be used in many situations including the following situation where you need to use the following null and alternate hypothesis for the a single population mean H0: μ = μ0 ( μ0 is what is given in the question you do not know it is true) H1: μ < μ0 ( you are checking if μ less than μ0) When you have the lower tail case shade in the left to get the reject H0 region Reject H0 if the test statistic in the rejection region. If you use s then you do not have an accurate value of standard error if n is small, the df takes this into account (the main z scores are at the bottom of this t-table) Example for when α=0.05 And test stat has a Z distribution Go to row z and column 0.05 And find the critical value -1.645 Do not reject H0 region reject H0 region area is α The z chart has the same information P(Z<-1.645) = 0.05 If the null hypothesis is true the probability the test statistic is below the critical value is α, Most books do not use diagrams they use the international notation P(Z<-1.645) = 0.05 or -Z0.05 = -1.645 The critical value is what comes from the table significance level α is the column 0.25 0.2 0.15 0.1 0.05 0.025 df 1 2 3 4 5 6 7 8 9 10 11 -1.000 -0.817 -0.765 -0.741 -0.727 -0.718 -0.711 -0.706 -0.703 -0.700 -0.697 -1.376 -1.061 -0.979 -0.941 -0.920 -0.906 -0.896 -0.889 -0.883 -0.879 -0.876 -1.963 -1.386 -1.250 -1.190 -1.156 -1.134 -1.119 -1.108 -1.100 -1.093 -1.088 -3.078 -1.886 -1.638 -1.533 -1.476 -1.440 -1.415 -1.397 -1.383 -1.372 -1.363 -6.314 -2.920 -2.353 -2.132 -2.015 -1.943 -1.895 -1.860 -1.833 -1.812 -1.796 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 40 50 60 80 100 1000 ∞(z*) -0.694 -0.692 -0.691 -0.690 -0.689 -0.688 -0.688 -0.687 -0.686 -0.686 -0.685 -0.685 -0.684 -0.684 -0.684 -0.683 -0.683 -0.683 -0.681 -0.679 -0.679 -0.678 -0.677 -0.675 -0.674 -0.870 -0.868 -0.866 -0.865 -0.863 -0.862 -0.861 -0.860 -0.859 -0.858 -0.858 -0.857 -0.856 -0.856 -0.855 -0.855 -0.854 -0.854 -0.851 -0.849 -0.848 -0.846 -0.845 -0.842 -0.841 -1.079 -1.076 -1.074 -1.071 -1.069 -1.067 -1.066 -1.064 -1.063 -1.061 -1.060 -1.059 -1.058 -1.058 -1.057 -1.056 -1.055 -1.055 -1.050 -1.047 -1.045 -1.043 -1.042 -1.037 -1.036 -1.350 -1.345 -1.341 -1.337 -1.333 -1.330 -1.328 -1.325 -1.323 -1.321 -1.319 -1.318 -1.316 -1.315 -1.314 -1.313 -1.311 -1.310 -1.303 -1.299 -1.296 -1.292 -1.290 -1.282 -1.282 50%CI 60%CI 70%CI 80%CI 0.005 0.0025 0.001 0.0005 -12.706 -15.895 -31.821 -4.303 -4.849 -6.965 -3.182 -3.482 -4.541 -2.776 -2.999 -3.747 -2.571 -2.757 -3.365 -2.447 -2.612 -3.143 -2.365 -2.517 -2.998 -2.306 -2.449 -2.896 -2.262 -2.398 -2.821 -2.228 -2.359 -2.764 -2.201 -2.328 -2.718 -63.657 -9.925 -5.841 -4.604 -4.032 -3.707 -3.499 -3.355 -3.250 -3.169 -3.106 -127.321 -14.089 -7.453 -5.598 -4.773 -4.317 -4.029 -3.833 -3.690 -3.581 -3.497 -318.309 -22.327 -10.215 -7.173 -5.893 -5.208 -4.785 -4.501 -4.297 -4.144 -4.025 -636.619 -31.599 -12.924 -8.610 -6.869 -5.959 -5.408 -5.041 -4.781 -4.587 -4.437 -1.771 -1.761 -1.753 -1.746 -1.740 -1.734 -1.729 -1.725 -1.721 -1.717 -1.714 -1.711 -1.708 -1.706 -1.703 -1.701 -1.699 -1.697 -1.684 -1.676 -1.671 -1.664 -1.660 -1.646 -1.645 -2.160 -2.145 -2.131 -2.120 -2.110 -2.101 -2.093 -2.086 -2.080 -2.074 -2.069 -2.064 -2.060 -2.056 -2.052 -2.048 -2.045 -2.042 -2.021 -2.009 -2.000 -1.990 -1.984 -1.962 -1.960 -2.282 -2.264 -2.249 -2.235 -2.224 -2.214 -2.205 -2.197 -2.189 -2.183 -2.177 -2.172 -2.167 -2.162 -2.158 -2.154 -2.150 -2.147 -2.123 -2.109 -2.099 -2.088 -2.081 -2.056 -2.054 -2.650 -2.624 -2.602 -2.583 -2.567 -2.552 -2.539 -2.528 -2.518 -2.508 -2.500 -2.492 -2.485 -2.479 -2.473 -2.467 -2.462 -2.457 -2.423 -2.403 -2.390 -2.374 -2.364 -2.330 -2.326 -3.012 -2.977 -2.947 -2.921 -2.898 -2.878 -2.861 -2.845 -2.831 -2.819 -2.807 -2.797 -2.787 -2.779 -2.771 -2.763 -2.756 -2.750 -2.704 -2.678 -2.660 -2.639 -2.626 -2.581 -2.576 -3.372 -3.326 -3.286 -3.252 -3.222 -3.197 -3.174 -3.153 -3.135 -3.119 -3.104 -3.091 -3.078 -3.067 -3.057 -3.047 -3.038 -3.030 -2.971 -2.937 -2.915 -2.887 -2.871 -2.813 -2.807 -3.852 -3.787 -3.733 -3.686 -3.646 -3.610 -3.579 -3.552 -3.527 -3.505 -3.485 -3.467 -3.450 -3.435 -3.421 -3.408 -3.396 -3.385 -3.307 -3.261 -3.232 -3.195 -3.174 -3.098 -3.090 -4.221 -4.140 -4.073 -4.015 -3.965 -3.922 -3.883 -3.850 -3.819 -3.792 -3.768 -3.745 -3.725 -3.707 -3.690 -3.674 -3.659 -3.646 -3.551 -3.496 -3.460 -3.416 -3.390 -3.300 -3.291 90%CI 95%CI 96%CI 98%CI 99%CI 99.5%CI 99.8%CI 99.9%CI 3 0.02 0.01 Statistical tables page 4of 4, You will be given these tables in all tests and exams χ2 values χ2 Table, Use this to test independence if you are given a two way table (in rarer cases you can also test the goodness of fit) df degrees of freedom for χ2 curve (This will usually be 1) P area under the χ2 curve with df degrees of freedom to the right Unless you are told other wise assume that the significance level is 5% so use the =0.05 column 0.25 df 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 40 50 1.32 2.77 4.11 5.39 6.63 7.84 9.04 10.22 11.39 12.55 13.70 14.85 15.93 17.12 18.25 19.37 20.49 21.60 22.72 23.83 24.93 26.04 27.14 28.24 29.34 30.43 31.53 32.62 33.71 34.80 45.62 56.33 0.20 0.15 0.10 0.05 1.64 3.22 4.64 5.59 7.29 8.56 9.80 11.03 12.24 13.44 14.63 15.81 15.58 18.15 19.31 20.47 21.61 22.76 23.90 25.04 26.17 27.30 28.43 29.55 30.68 31.79 32.91 34.03 35.14 36.25 47.27 53.16 2.07 3.79 5.32 6.74 8.12 9.45 10.75 12.03 13.29 14.53 15.77 16.99 18.90 19.4 20.60 21.79 22.98 24.16 25.33 26.50 27.66 28.82 29.98 31.13 32.28 33.43 34.57 35.71 36.85 37.99 49.24 60.35 2.71 4.61 6.25 7.78 9.24 10.64 12.02 13.36 14.68 15.99 17.29 18.55 19.81 21.06 22.31 23.54 24.77 25.99 27.20 28.41 29.62 30.81 32.01 33.20 34.38 35.56 36.74 37.92 39.09 40.26 51.81 63.17 3.84 5.99 7.81 9.49 11.07 12.53 14.07 15.51 16.92 18.31 19.68 21.03 22.36 23.68 25.00 26.30 27.59 28.87 30.14 31.41 39.67 33.92 35.17 36.42 37.65 38.89 40.11 41.34 42.56 43.77 55.76 67.50 Tail probabilities α 0.025 0.02 0.01 0.005 0.0025 0.001 5.02 7.38 9.35 11.14 12.83 14.45 16.01 17.53 19.02 20.48 21.92 23.34 24.74 26.12 27.49 28.85 30.19 31.53 32.85 34.17 35.48 36.78 38.08 39.36 40.65 41.92 43.19 44.46 45.72 46.98 59.34 71.42 7.88 10.60 12.84 14.86 16.75 13.55 20.28 21.95 23.59 25.19 26.76 28.30 29.82 31.32 32.80 34.27 35.72 37.16 38.58 40.00 41.40 42.80 44.18 45.56 46.93 48.29 49.64 50.99 52.34 53.67 66.77 79.49 9.14 11.98 14.32 16.42 18.39 20.25 22.04 23.77 25.46 27.11 28.73 30.32 31.88 33.43 34.95 36.46 37.95 39.42 40.88 42.34 43.78 45.20 46.62 48.03 49.44 50.83 52.22 53.59 54.97 56.33 69.70 82.66 10.83 13.82 16.27 18.47 20.51 22.46 24.32 26.12 27.83 29.59 31.26 32.91 34.53 36.12 37.70 39.25 40.79 42.31 43.82 45.31 46.80 48.27 49.73 51.18 52.62 54.05 55.48 56.89 58.30 59.70 73.40 86.66 5.41 7.82 9.84 11.67 13.33 15.03 16.62 18.17 19.63 21.16 22.62 24.05 25.47 26.87 28.26 29.63 31.00 32.35 33.69 35.02 36.34 37.66 38.97 40.27 41.57 42.86 44.14 45.42 46.69 47.96 60.44 72.61 6.63 9.21 11.34 13.23 15.09 16.81 18.48 20.09 21.67 23.21 24.72 26.22 27.69 29.14 30.58 32.00 33.41 34.81 36.19 37.57 38.93 40.29 41.64 42.98 44.31 45.64 46.96 48.28 49.59 50.89 63.69 76.15 2 2 This is 40, 0.25 =45.62 Because the df is 40 And the shaded area is 0.25 This is 50, 0.001 =86.66 Because the df is 50 And the shaded area in the right tail is 0.001 4
© Copyright 2026 Paperzz