AP Statistics Review of Part II 1) Tony and Mark took different college entrance tests. The scores on the test that Tony took are normally distributed with a mean of 25 points and a standard deviation of 4.2 points. The scores on the test that Mark took are normally distributed with a mean of 550 points and a standard deviation of 90 points. Tony scored 30 on his test and Mark score 610 on his test. Who scored better on his college entrance test? Explain your reasoning. Tony Mark 30 25 610 550 z 1.19 z 0.67 4.2 90 Tony scored better because he had a high z-score. 2) The score on an exam for entrance to a law enforcement program are normally distributed with the mean of 250 points and standard deviation of 25 points. a. Label the normal curve b. What is the z-score for an entrance exam of 232? z .72 c. What percent of the population would have an entrance exam grade of a 289? 94.06% d. What percent of the population had an entrance exam grade above 200? 97.72% e. What percent of the population had an entrance exam grade between 235 and 260? 38.12% f. Determine entrance exam score if you are in the 80th percentile. 271 g. Find the interval that contains the middle 95% of entrance exam scores? The interval that contains the middle 95% of entrance exams is between 200 and 300 3) Managers rate employees according to job performance and attitude. The results for several randomly selected employees are given below in the table. Answer the following questions. Attitude 59 63 65 69 58 77 76 69 70 64 Performance 72 67 78 82 75 87 92 83 87 78 a) What is the least square regression line? performance 11.629 1.022attitude b) Explain, in context, what the r value means. r 0.863 indicates that there is a moderately strong, positive, linear relationship between attitude and performance. c) Explain, in context, what the R 2 value means. r 2 0.745 indicates that indicates that 74.5% of the variation in the performance is accounted for by the linear relationship with attitude. d) Explain in context, what the slope of the line means. The job performance 1.022 increases as the attitude increases 4) A survey of students in a large Introductory Statistics class asked about their birth order (first or only child, second, etc.) and which major they were enrolled in. Arts and sciences Mathematics Science Other Total First or only 34 52 15 12 113 Second or later 23 41 28 18 110 Total 57 93 43 30 223 a) What is the probability that the person was enrolled in mathematics if it is known that the person was a first or only child? 52 0.460 113 b) What is the probability that the person was the first or only given that it is a person who was a mathematics major? 52 0.559 93 c) Are the events selecting a math major and selecting a person who was a first or only child independent events? Justify your answer. No because 0.460 0.559 5) Researchers believe that a new drug called Bone Builder will help bones heal after children have broken or fractured a bone. The researchers believe that Bone Builder will work differently on bone breaks than on bone fractures. On all subjects, Bone Builder will be used in conjunction with traditional casts. To test the impact of Bone Builder on bone healing, the researchers recruit 18 children with bone breaks and 30 children with bone fractures. The time required for the bone to completely heal from the time it was put in the cast will be measured. Design an appropriate experiment to determine if Bone Builder will help bones heal? Birthweights and Birth Order. A physician who has delivered babies for over 20 years claims that the birthweights of babies tend to be higher than the birthweight of their next older sibling. In other words, a parent’s second child tends to have a higher birthweight than the first child, the third child tends to have higher birthweight than the second child, and so on. To verify the doctor’s statement, her office assistant gets a random sample of mothers with at least two children from the hospital records, and records the birthweights of the first two children. The birthweights for the children of 19 mothers are given in the table below. Mother 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Birthweight of First Child (in pounds) Birthweight of Second Child (in pounds) 5.13 5.25 6.71 4.71 3.77 5.81 8.29 6.36 6.08 4.91 3.19 5.64 6.37 5.90 4.73 5.60 4.68 7.79 4.18 5.37 5.65 6.89 5.61 3.37 6.65 8.77 6.13 6.97 5.58 3.43 5.89 6.88 6.21 4.93 6.25 5.30 7.38 4.77 44a. Does this data provide any evidence to support the physician’s theory? Justify your answer using the following statistical evidence. Write down the five number summary for each of the categories with the mean and standard deviation. Each of the statistics in the Five-Number Summary is higher for the second child that the corresponding statistic for the first child. The boxplots illustrate this. This data provides significant evidence SUPPORTING the physician’s statement 44b. The scatterplot of birthweights of first-born children and second-born children is given below. Describe the relation between the birthweights of first-born children and the birthweights of second-born children. There appears to be a strong positive linear relationship between the birth weights of first and second child. 44c. The regression analysis of the data resulted in the following outcome. sec ond 0.55 0.967first SD 0.3772 R 2 0.91 Is there a significant relation between the birthweights of the first-born children and the birthweights of the second-born children? Justify your answer using statistical evidence. The residual plot shows little to no pattern indicating that the linear model is appropriate. We can conclude that there is sufficient evidence to indicate a relationship between the birth weights of the second born child. 44d. Suppose the doctor is getting ready to deliver the second child of a mother whose first child weighed 7.2 pounds. Predict the birthweight of this second child.
© Copyright 2026 Paperzz