FOUNDATIONS OF KNOWLEDGE REPRESENTATION AND REASONING João Pavão Martins Departamento de Engenharia Informática Instituto Superior Técnico Universidade Técnica de Lisboa ii c Copyright !1996, 1997, 1998, 1999, 2001, 2004, 2005, 2006 João Pavão Martins All Rights Reserved No part of this book may be reproduced in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage or retrieval system without permission in advance, in writing, from the author: João Pavão Martins Grupo de Inteligência Artificial Departamento de Engenharia Informática Instituto Superior Técnico Av. Rovisco Pais 1096 Lisboa CODEX Portugal [email protected] Contents Glossary of notations vii Preface xi 1 What is Knowledge Representation? 1.1 World, models, and representations . . . . . 1.2 Cognitive agents . . . . . . . . . . . . . . . 1.3 What is knowledge? . . . . . . . . . . . . . 1.4 Underlying hypotheses . . . . . . . . . . . . 1.4.1 Physical symbol system hypothesis . 1.4.2 Knowledge representation hypothesis 1.5 Levels of approach . . . . . . . . . . . . . . 1.5.1 The knowledge level . . . . . . . . . 1.5.2 The symbol level . . . . . . . . . . . 1.6 Declarative and procedural knowledge . . . 1.7 Other aspects of knowledge representation . 1.8 Bibliographic notes and historical remarks . . . . . . . . . . . . . . . . . . . . . . . . . 2 Classical Logic 2.1 Propositions and arguments . . . . . . . . . . . 2.2 Components of a logic . . . . . . . . . . . . . . 2.2.1 The deductive system . . . . . . . . . . 2.2.2 The semantics . . . . . . . . . . . . . . 2.2.3 Deductive system vs. semantics . . . . . 2.3 Propositional logic . . . . . . . . . . . . . . . . 2.3.1 Deductive system . . . . . . . . . . . . . Theorems and derived rules of inference New logical symbols . . . . . . . . . . . How do we construct proofs? . . . . . . i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 6 11 14 14 15 16 16 17 18 21 22 . . . . . . . . . . 25 26 32 33 34 34 35 38 49 51 53 ii CONTENTS 2.4 2.5 2.6 2.7 2.8 Properties of the deductive system . . . . . . . . . 2.3.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . 2.3.3 Soundness and completeness of propositional logic First-order logic . . . . . . . . . . . . . . . . . . . . . . . . 2.4.1 Deductive system . . . . . . . . . . . . . . . . . . . 2.4.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . 2.4.3 Soundness and completeness of first-order logic . . Representation using logic . . . . . . . . . . . . . . . . . . 2.5.1 Kinship relations . . . . . . . . . . . . . . . . . . . 2.5.2 World of airplanes . . . . . . . . . . . . . . . . . . 2.5.3 Blocks world . . . . . . . . . . . . . . . . . . . . . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . Bibliographic notes and historical remarks . . . . . . . . . Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Non-Classical Logics 3.1 Modal logic . . . . . . . . . . . . . . . . . . . . . . . . 3.1.1 The language of propositional modal logic . . . 3.1.2 Semantics for propositional modal logic . . . . 3.1.3 Properties of the accessibility relation . . . . . 3.1.4 Axioms and readings of the modal operators . 3.1.5 Deductive system for propositional modal logic Rules for normal modal logic . . . . . . . . . . Rules for other modal logics. . . . . . . . . . . 3.1.6 Soundness and completeness . . . . . . . . . . 3.1.7 First-order modal logic . . . . . . . . . . . . . . The language of first-order modal logic . . . . . Remarks on first-order modal logic . . . . . . . 3.2 Relevance logic . . . . . . . . . . . . . . . . . . . . . . 3.2.1 Deductive system . . . . . . . . . . . . . . . . . 3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Bibliographic notes and historical remarks . . . . . . . 3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 4 Non-Monotonic Formalisms 4.1 Basic principles . . . . . . 4.2 Default Logic . . . . . . . 4.2.1 Deductive system . 4.2.2 Semantics . . . . . 4.3 Auto-epistemic Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 . 61 . 64 . 65 . 73 . 76 . 84 . 84 . 85 . 93 . 98 . 100 . 101 . 102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 . 144 . 149 . 149 . 159 . 169 109 111 112 113 119 121 124 124 127 128 128 128 129 130 132 138 138 139 iii CONTENTS 4.4 4.5 4.6 4.7 Circumscription . . Summary . . . . . Bibliographic notes Exercises . . . . . . . . . . . . . . . . . . . . . and historical . . . . . . . . . . . . . . . . . . remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 174 174 177 5 Belief Revision 181 5.1 The need for belief revision . . . . . . . . . . . . . . . . . . . 183 5.2 Justification-based systems . . . . . . . . . . . . . . . . . . . 185 5.2.1 JTMS . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 5.2.2 Interaction between the JTMS and the problem solver 194 5.2.3 Removal of contradictions . . . . . . . . . . . . . . . . 196 5.3 Dependency networks . . . . . . . . . . . . . . . . . . . . . . 198 5.3.1 Computation of labels for nodes . . . . . . . . . . . . 199 5.4 Assumption-based systems . . . . . . . . . . . . . . . . . . . . 200 5.4.1 Computation of labels for nodes . . . . . . . . . . . . 201 5.4.2 Interaction between the ATMS and the problem solver 202 5.4.3 Removal of contradictions . . . . . . . . . . . . . . . . 203 5.5 Other approaches . . . . . . . . . . . . . . . . . . . . . . . . . 203 5.5.1 Multiple Belief Reasoner . . . . . . . . . . . . . . . . . 204 5.5.2 Logic-based TMS . . . . . . . . . . . . . . . . . . . . . 206 5.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 5.7 Bibliographic notes and historical remarks . . . . . . . . . . . 208 5.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 6 Semantic Networks 6.1 Basic principles of semantic networks . . . . . . . 6.2 sneps: A case study . . . . . . . . . . . . . . . . 6.2.1 Arcs in sneps . . . . . . . . . . . . . . . . 6.2.2 Nodes in sneps . . . . . . . . . . . . . . . 6.2.3 Knowledge representation in sneps . . . . 6.2.4 Logical connectives in sneps . . . . . . . . 6.2.5 Network representation of the connectives 6.2.6 Putting it all together . . . . . . . . . . . 6.2.7 Inference in sneps . . . . . . . . . . . . . 6.2.8 Building and using sneps networks . . . . 6.2.9 Examples . . . . . . . . . . . . . . . . . . 6.3 Other kinds of semantic networks . . . . . . . . . 6.3.1 Conceptual graphs . . . . . . . . . . . . . 6.3.2 Semantic primitives . . . . . . . . . . . . 6.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 . 218 . 224 . 225 . 225 . 229 . 238 . 248 . 251 . 254 . 256 . 262 . 266 . 266 . 268 . 271 iv CONTENTS 6.5 6.6 Bibliographic notes and historical remarks . . . . . . . . . . . 271 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 7 Frames 7.1 Basic concepts . . . . . . . . . . 7.2 Reasoning with frames . . . . . . 7.2.1 Property inheritance . . . 7.2.2 Procedural attachment . . 7.2.3 Rule-based reasoning . . . 7.3 KEE: A case study . . . . . . . . 7.3.1 Basics . . . . . . . . . . . 7.3.2 TellAndAsk . . . . . . 7.3.3 Reasoning with KEE . . . 7.4 Formal semantic of frames . . . . 7.5 Scripts . . . . . . . . . . . . . . . 7.6 Concluding remarks . . . . . . . 7.7 Bibliographic notes and historical 7.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Description Logics 8.1 Basic principles . . . . . . . . . . . . . . . . . . . . 8.1.1 TBox – The terminological component . . . 8.1.2 ABox – The assertional component . . . . . 8.2 Terminological formalism . . . . . . . . . . . . . . 8.2.1 Concept descriptions . . . . . . . . . . . . . 8.2.2 Role descriptions . . . . . . . . . . . . . . . 8.2.3 Knowledge bases — the TBox . . . . . . . . 8.2.4 Models and semantic structures . . . . . . . 8.2.5 Terminological languages . . . . . . . . . . 8.3 Assertional formalism . . . . . . . . . . . . . . . . 8.3.1 Interpretations . . . . . . . . . . . . . . . . 8.4 Reasoning in description logics . . . . . . . . . . . 8.4.1 Reasoning in the terminological component 8.4.2 Reasoning in the assertional component . . 8.4.3 Knowledge bases vs. Data bases . . . . . . 8.5 Implementations of description logics . . . . . . . . 8.5.1 The terminological language . . . . . . . . . 8.5.2 The assertional language . . . . . . . . . . . 8.6 Knowledge modeling in description logics . . . . . 8.7 RACER: A case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 279 284 284 286 287 289 289 292 295 297 301 302 302 304 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 . 309 . 310 . 315 . 316 . 318 . 322 . 324 . 325 . 325 . 326 . 327 . 328 . 328 . 333 . 334 . 335 . 335 . 338 . 339 . 348 v CONTENTS 8.7.1 Building RACER knowledge bases 8.7.2 Evaluation functions . . . . . . . . 8.7.3 Queries . . . . . . . . . . . . . . . 8.7.4 Retrieval . . . . . . . . . . . . . . 8.7.5 Example . . . . . . . . . . . . . . . Bibliographic notes and historical remarks Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 353 354 354 356 364 365 9 Knowledge Representation Revisited 9.1 Notational and inferential perspectives . . 9.2 Abstraction levels . . . . . . . . . . . . . . 9.2.1 The implementation level . . . . . 9.2.2 The logical level . . . . . . . . . . 9.2.3 The epistemological level . . . . . 9.2.4 The conceptual level . . . . . . . . 9.3 The knowledge level and the symbol level 9.4 Bibliographic notes and historical remarks 9.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 373 374 374 375 377 378 379 384 385 8.8 8.9 References 387 vi CONTENTS Glossary of notations Notation !→ tell ask {e1 , . . . , en } (∆, α) ∴ # |= LP L ¬ ∧ ∨ → Pi ∪ Prem Rep ∧I ∧E Hyp Reit #α #α →I →E ¬I ¬E Description Function mapping Knowledge base addition Knowledge base query Set with elements e1 , . . . , en Argument Therefore Derivability Logical consequence Language of propositional logic Negation Conjunction Disjunction Implication Predicate symbol Set union Rule of premise Rule of repetition Rule of conjunction introduction Rule of conjunction elimination Rule of hypothesis Rule of reiteration Theorem Theorem Empty set Rule of implication introduction Rule of implication elimination Rule of negation introduction Rule of negation elimination Page 16 16, 382 16, 382 26 26 26 33, 43 34, 63 36 36 36 36 36 36 37 39 39 39 40 41 41 43 43 43 43 43 45 45 viii GLOSSARY OF NOTATIONS Notation ∨I ∨E Theo →E" MT ¬¬I ¬∨I def = ↔ ↔I ↔E " T h(∆) V LF OL ∀ ∃ fin Pin xi Pin (t1 , t2 , . . . , tn ) {x1 /t1 , . . . , xn /tn } · ∀I ∀E ∃I ∃E (D, F, R) D F R I |=I α LP M L ! " (W, R) Description Rule of disjunction introduction Rule of disjunction elimination Derived rule of theorem Derived rule of implication elimination Modus tollens Derived rule of double negation introduction Derived rule of negated disjunction introduction By definition Equivalence Rule of equivalence introduction Rule of equivalence elimination Q.E.D. (end of proof) Theory generated from ∆ Valuation function Language of first-order logic Universal quantification Existential quantification Function symbol (with n arguments) Predicate symbol (with n arguments) Individual variable Atomic wff Substitution Application of substitution Rule of universal introduction Rule of universal elimination Rule of existential introduction Rule of existential elimination Conceptualisation Universe of discourse Set of functions Set of relations Interpretation function α is true under the interpretation I Language of propositional modal logic Necessary Possible Kripke structure Page 46 46 49 50 51 51 51 53 52 53 53 57 60 61 65 68 68 68 68 68 70 72 72 73 74 75 75 78 78, 317 79 79 80, 327 82 112 113 113 114 ix GLOSSARY OF NOTATIONS Notation (W, R, V ) R(w1 , w2 ) |=M α M |=w α LF OM L ⇒ LP RL N 2S + LP RL α(x):β1 (x),...,βm (x) γ(x) α:β1 ,...,βm γ α(x):β(x) β(x) (R, ∆) Γ(Ω) ≥r ≥R M od(∆) T (n1 , . . . , nm ) <AM | AN m | c> ma nma conc ∩ <AM - c> ∧⇒ ∨⇒ ! "j n i Cin (α1 , . . . , αn ) Description Kripke model Accessibility relation between w1 and w2 Model M satisfies wff α α is true in world w according to model M Language of first order modal logic Entailment Language of propositional relevance logic Set of natural numbers Set of sets of S Language of extended propositional relevance logic Page 115 114 117 117 129 132 132 132 132 General default rule 149 Closed default rule 150 Normal default rule 150 Default theory Extension generating operator Preference relation introduced by default rule r Preference relation introduced by set R 151 154 Set of models of ∆ Translation function in a TMS Sequence General justification Set of monotonic antecedents Set of non-monotonic antecedents Conclusion of a justification Set intersection Monotonic justification And-entailment Or-entailment And-or Ordered set of all the i-combinations of the elements of the set {α1 , . . . , αn } 162 189 193 198 198 198 198 199 201 241 241 241 132 160 161 245 x GLOSSARY OF NOTATIONS Notation n k ci (α1 , . . . , αn ) n k c̄i (α1 , . . . , αn ) \ f .{α1#, . . .$, αn }/ n j E [D, E] 0 ⊥ 2 3 ∀R.C ∃R.0 ∃R.C ≥nR ≤nR {i1 , . . ., in } -SU R1 5 R2 R+ R− ≡ 7 T |=[D,E] T AL ALUEN O C R [D, I] |=[D,I] ∆ T |=[D,E] C 7 D Description k-th element of Cin (α1 , . . . , αn ) {α1 , . . . , αn } \ k cni (α1 , . . . , αn ) Set difference The set {f (α1 ), . . . , f (αn )} Number of combinations of n things j at time Extension function Semantic structure Universal concept Inconsistent concept Concept or role intersection Concept or role union Value restriction Limited existential quantification Full existential quantification Number restriction Number restriction Concept enumeration Cardinality of set S Universal role Role composition Transitive closure Inverse role Concept or role equality Concept or role inclusion Terminology Model of a terminology Page 245 245 245 245 245 318 318 318 318 319, 322 319, 322 319 320 320 321 321 321 321 322 322 323 323 324 324 325 325 Attributive language Attributive language with union, full existential quantification, and number restrictions Set of entities (individuals or objects) Set of concepts Set of roles Description logic interpretation Model of a description 325 D subsumes C in terminology T 329 326 327 327 327 327 328 Preface This book corresponds to a compilation of the notes that have been used in the course on knowledge representation offered by Instituto Superior Técnico, Technical University of Lisbon (Portugal). It should be considered as a rough draft of a forthcoming book on Knowledge Representation. Comments and suggestions about its contents will be most welcome. The book is organized into the following parts: • Part 1 - Overview (Chapters 1 and 9) Provides an overview of the field of knowledge representation; • Part 2 - Foundations (Chapters 2, 3, 4, and 5) Provides the foundations for understanding and evaluating different knowledge representation formalisms; • Part 3 - Representation Formalisms (Chapters 6, 7, and 8) Presents the characteristics of the main representation formalisms; discusses, in detail, one formalism of each type; and presents evaluation criteria for a knowledge representation system; Acknowledgments I am grateful to Stuart C. Shapiro, Bill Rapaport, Maria R. Cravo, Ana Cardoso Cachopo, Helena Sofia Pinto, Pedro Oliveira, Pedro Lemos, Sérgio xii PREFACE Costa, Paulo Filipe Andrade, Paulo Sebastião, Pedro Martins, and Haythem Ismail for comments on earlier drafts of this book.
© Copyright 2026 Paperzz