Hindawi Publishing Corporation î e ScientiďŹc World Journal Volume 2014, Article ID 317387, 12 pages http://dx.doi.org/10.1155/2014/317387 Research Article Approximation Set of the Interval Set in Pawlakâs Space Qinghua Zhang,1,2 Jin Wang,1 Guoyin Wang,1 and Feng Hu1 1 The Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China 2 School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China Correspondence should be addressed to Qinghua Zhang; [email protected] Received 21 May 2014; Revised 19 July 2014; Accepted 19 July 2014; Published 11 August 2014 Academic Editor: Xibei Yang Copyright © 2014 Qinghua Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The interval set is a special set, which describes uncertainty of an uncertain concept or set Z with its two crisp boundaries named upper-bound set and lower-bound set. In this paper, the concept of similarity degree between two interval sets is defined at first, and then the similarity degrees between an interval set and its two approximations (i.e., upper approximation set đ (Z) and lower approximation set đ (Z)) are presented, respectively. The disadvantages of using upper-approximation set đ (Z) or lowerapproximation set đ (Z) as approximation sets of the uncertain set (uncertain concept) Z are analyzed, and a new method for looking for a better approximation set of the interval set Z is proposed. The conclusion that the approximation set đ 0.5 (Z) is an optimal approximation set of interval set Z is drawn and proved successfully. The change rules of đ 0.5 (Z) with different binary relations are analyzed in detail. Finally, a kind of crisp approximation set of the interval set Z is constructed. We hope this research work will promote the development of both the interval set model and granular computing theory. 1. Introduction Since the twenty-first century, researchers have done more and more research on uncertain problems [1]. It is an important research topic on how to effectively deal with uncertain data and how to acquire more knowledge and rules from the big data. At the same time, many methods for acquiring uncertain knowledge from uncertain information systems appeared gradually. In 1965, fuzzy sets theory was proposed by Zadeh [2]. In 1982, rough sets theory was proposed by Pawlak [3]. In 1990, quotient space theory was presented by L. Zhang and B. Zhang [4]. In 1993, interval sets and interval sets algebra were presented by Yao [5, 6]. Rough set theory is a mathematical tool to handle the uncertain information, which is imprecise, inconsistent, or incomplete. The basic thought of rough set is to obtain concepts and rules through classification of relational database and discover knowledge by the classification induced by equivalence relations; then approximation sets of the target concept are obtained with many equivalence classes. Rough set is a useful tool to handle uncertain problems, as well as fuzzy set theory, probability theory, and evidence theory. Because rough set theory has novel ideas and its calculation is easy and simple, it has been an important technology in intelligent information processing [7â9]. The key issue of rough set is building a knowledge space which is a partition of the domain đ and is induced by an equivalence relation. In the knowledge space, two certain sets named upper approximation set and lower approximation set are used to describe the target concept đ as its two boundaries. If knowledge granularity in knowledge space is coarser, then the border region of described target concept is wider and approximate accuracy is relatively lower. On the contrary, if knowledge granularity in knowledge space is finer, then the border region is narrower and approximate accuracy is relatively higher. The interval set theory is an effective method for describing ambiguous information [10â12] and can be used in uncertain reasoning as well as the rough set [13â15]. The interval set not only can be used to describe the partially known concept, but also can be used to study the approximation set of the uncertain target concept. So, the interval set is a more general model for processing the uncertain information [16]. The interval set is described by two sets named upper bound 2 and lower bound [17]. The elements in lower bound certainly belong to target concept, and the elements in upper bound probably belong to target concept. When the boundary region has no element, the interval set degenerates into a usual set [5], while, in a certain knowledge granularity space, target concept may be uncertain. To solve this problem, in this paper, the approximate representation of interval set is discussed in detail in Pawlakâs approximation space. And then, the upper approximation set of interval set and lower approximation set of interval set are defined, respectively. The change rules of the approximation set of interval set with the different knowledge granularity in Pawlakâs approximation space are analyzed. In this paper, an approximation set of the target concept Z is built in a certain knowledge space induced by many conditional attributes, and we find that this approximation set may have better similarity degree with the target concept Z than that of đ (Z) or đ (Z). Therefore, an interval set is translated into a fuzzy set at first in this paper. And then, according to the different membership degrees of different elements in boundary region, an approximation set of interval set Z is obtained by cut-set with some threshold. And then, the decision-making rules can be obtained through the approximation set instead of Z in current knowledge granularity space. In addition, the change rules of similarity between a target concept Z and its approximation sets are analyzed in detail. The method used is getting the approximation of interval sets with a special approximation degree. With this method, we can use certain sets to describe an interval set in Pawlakâs space. Our motivation is to get a mathematical theory model, which can be helpful to promote interval sets development in knowledge acquisition. The rest of this paper is organized as follows. In Section 2, the related basic concepts and preliminary knowledge are reviewed. In Section 3, the concept of similarity degree between two interval sets is defined. The approximation set of interval set and 0.5-approximation set are proposed in Section 4. The change rules of similarity degree between the approximation sets and the target concept Z with the different knowledge granularity spaces are discussed in Section 5. This paper is concluded in Section 6. 2. Preliminaries In order to introduce the approximation set of interval set more easily, many basic concepts will be reviewed at first. Definition 1 (interval set [17]). An interval set is a new collection, and it is described by two sets named upper bound and lower bound. The interval set can be defined as follows. Let đ be a finite set which is called universal set, and then let 2đ be the power set of đ and let interval set Z be a subset of 2đ. In mathematical form, interval set Z is defined as Z = [đđ , đđ˘ ] = {đ â 2đ | đđ â đ â đđ˘ }. If đđ = đđ˘ , Z is a usual classical set. In order to better explain the interval set, there is an example [17, 18] as follows. Let đ be all papers submitted The Scientific World Journal to a conference. After being reviewed, there are 3 kinds of results. The first kind of results is the set of papers certainly accepted and represented by đđ . The second kind of results is the set of papers that need to be further reviewed and represented by đđ˘ â đđ . The last kind of results is the set of papers rejected and represented by đ â đđ˘ . Although every paper just can be rejected or accepted, no one knows the final result before further evaluation. Through reviewing, the set of papers accepted by the conference is described as [đđ , đđ˘ ]. Definition 2 (indiscernibility relation [4, 19]). For any attribute set đ â đ´, let us define one unclear binary relationship IND(đ ) = {(đĽ, đŚ) | (đĽ, đŚ) â đ2 , âđ â đ â đ(đĽ) = đ(đŚ)}. Definition 3 (information table of knowledge expression system [4, 20]). A knowledge expression system can be described as đ = â¨đ, đ´, đ, đâŠ. đ is the domain, and đ´ = đśâŞ đˇ is the set of all attributes. Subset đś is a set of conditional attributes, and đˇ is a set of decision-making attributes. đ = âŞđâđ´đđ is the set of attribute values. đđ describes the range of attribute values đ where đ â đ´. đ : đ × đ´ â đ is an information function which describes attribute values of object đĽ in đ. Definition 4 (upper approximation set and lower approximation set of rough set [3]). A knowledge-expression system is described as đ = â¨đ, đ´, đ, đâŠ. For any đ â đ and đ â đ´, upper approximation set đ (đ) and lower approximation set đ (đ) of rough set đ on đ are defined as follows: đ (đ) = ⪠{đđ | đđ â đ â§ đđ ⊠đ ≠ đ} , IND (đ ) đ â§ đđ â đ} , đ (đ) = ⪠{đđ | đđ â IND (đ ) (1) where đ/IND(đ ) = {đ | (đ â đ â§ âđĽâđ,đŚâđ, đâđ (đ(đĽ) = đ(đŚ)))} is the classification of equivalence relation đ on đ. Upper approximation set and lower approximation set of rough set đ on đ can be defined in another form as follows: đ (đ) = {đĽ | đĽ â đ â§ [đĽ]đ â đ} , đ (đ) = {đĽ | đĽ â đ â§ [đĽ]đ ⊠đ ≠ đ} , (2) where [đĽ]đ â đ/IND(đ ) and [đĽ]đ is an equivalence class of đĽ on relation đ . đ (đ) is a set of objects which certainly belong to đ according to knowledge đ ; đ (đ) is a set of objects which possibly belong to đ according to knowledge đ . Let BNđ (đ) = đ (đ) â đ (đ) be called boundary region of target concept đ on relation đ . Let POSđ (đ) = đ (đ) be called positive region of target concept đ on relation đ . Let NEGđ (đ) = đ â đ (đ) be called negative region of target concept đ on relation đ . BNđ (đ) is a set of objects which just possibly belong to target concept đ. Definition 5 (similarity degree between two sets [20]). Let đ´ and đľ be two subsets of domain đ, which means đ´ â đ, đľ â đ. Defining a mapping đ : đ × đ â [0, 1], that is, The Scientific World Journal 3 (đ´, đľ) â đ(đ´, đľ), đ(đ´, đľ) is the similarity degree between đ´ and đľ, if đ(đ´, đľ) satisfies the following conditions. (1) For any đ´, đľ â đ, 0 ⊽ đ(đ´, đľ) ⊽ 1 (boundedness). (2) For any đ´, đľ â đ, đ(đ´, đľ) = đ(đľ, đ´) (symmetry). (3) For any đ´, đľ â đ, đ(đ´, đ´) = 1; đ(đ´, đľ) = 0 if and only if đ´ ⊠đľ = đ. Any formula satisfying (1), (2), and (3) is a similarity degree formula between two sets. Zhang et al. [20] gave out a similarity degree formula đ (đ´, đľ) = |đ´ ⊠đľ| , |đ´ ⪠đľ| (3) where | â | represents the number of elements in finite subset. Obviously, this formula satisfies (1), (2), and (3). Definition 6 (similarity degree between two interval sets). Let Z = [đđ , đđ˘ ] = {đ â 2đ | đđ â đ â đđ˘ } be an interval set and let N = [đđ , đđ˘ ] = {đ â 2đ | đđ â đ â đđ˘ } be also an interval set. Similarity degree between two interval sets can be defined as follows: óľ¨óľ¨ óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨đđ˘ ⊠đđ˘ óľ¨óľ¨óľ¨ óľ¨đ ⊠đđ óľ¨óľ¨óľ¨ + (4) S (Z, N) = óľ¨ óľ¨óľ¨ đ óľ¨ óľ¨. óľ¨ 2 óľ¨óľ¨đđ ⪠đđ óľ¨óľ¨óľ¨ 2 óľ¨óľ¨óľ¨đđ˘ ⪠đđ˘ óľ¨óľ¨óľ¨ S(Z, N) accords with Definition 5. Figure 1: Upper approximation set of an interval set. Definition 7 (upper approximation set and lower approximation set of an interval set). Let Z = [đđ , đđ˘ ] = {đ â 2đ | đđ â đ â đđ˘ } be an interval set. Let đ be an equivalence relation on domain đ. Upper approximation set of this interval set Z is defined as đ (Z) = [đ (đđ ), đ (đđ˘ )]. Lower approximation set of this interval set Z is defined as đ (Z) = [đ (đđ ), đ (đđ˘ )]. Figures 1 and 2 are probably helpful to understand Definition 7. In Figure 1, the outer circle standing for a set đđ˘ and inner circle standing for a set đđ represent an interval set Z, and each block represents an equivalence class. The black region represents đ (đđ ), and the whole colored region (black and gray region) represents đ (đđ˘ ). In Figure 2, the outer circle standing for a set đđ˘ and inner circle standing for a set đđ represent an interval set Z, and each block represents an equivalence class. The black region represents đ (đđ ), and the whole colored region (black and gray region) represents đ (đđ˘ ). If đ (Z) stands for the lower approximation set of the interval set Z, then the similarity degree between Z and đ (Z) is defined as follows: 3. Approximation Set đ đ (Z) of an Interval Set Z If đ (Z) stands for the upper approximation set of the interval set Z, then the similarity degree between Z and đ (Z) can be defined as follows: S (Z, đ (Z)) = đ (đđ , đ (đđ )) + đ (đđ˘ , đ (đđ˘ )) 2 2 óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨đđ ⊠đ (đđ )óľ¨óľ¨ óľ¨ óľ¨ + óľ¨óľ¨đđ˘ ⊠đ (đđ˘ )óľ¨óľ¨ . = óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨ 2 óľ¨óľ¨óľ¨đđ ⪠đ (đđ )óľ¨óľ¨óľ¨ 2 óľ¨óľ¨óľ¨đđ˘ ⪠đ (đđ˘ )óľ¨óľ¨óľ¨óľ¨ Figure 2: Lower approximation set of an interval set. (5) đ (đđ , đ (đđ )) đ (đđ˘ , đ (đđ˘ )) + 2 2 óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨đđ˘ ⊠đ (đđ˘ )óľ¨óľ¨óľ¨ óľ¨óľ¨đđ ⊠đ (đđ )óľ¨óľ¨ = óľ¨óľ¨ óľ¨+ óľ¨ óľ¨. 2 óľ¨óľ¨đđ ⪠đ (đđ )óľ¨óľ¨óľ¨ 2 óľ¨óľ¨óľ¨đđ˘ ⪠đ (đđ˘ )óľ¨óľ¨óľ¨ S (Z, đ (Z)) = (6) If the knowledge space keeps unchanged, is there a better approximation set of the target concept đ? In this paper, the better approximation sets of target concept will be proposed. 4 The Scientific World Journal Lemma 11 (see [20]). Let đ, đ, đ, and đ be all real numbers. In the numbers, 0 < đ < đ, 0 < đ < đ. If đ/đ ⊞ đ/đ, then đ/đ ⊽ (đ â đ)/(đ â đ). If đ/đ ⊽ đ/đ, then đ/đ ⊞ (đ â đ)/(đ â đ). In order to better understand the similarity degree between đ 0.5 (Z) and Z, Theorems 12 and 13 are presented as follows. Theorem 12. Let đ be a finite domain, let Z be an interval set on đ, and let đ be an equivalence relation on đ. Then, đ(Z, đ 0.5 (Z)) ⊞ đ(Z, đ (Z)). For example, let đ/đ = {{đĽ1 , đĽ2 }, {đĽ3 , đĽ4 }, {đĽ5 , đĽ6 }}, đđ˘ = {đĽ1 , đĽ2 , đĽ3 , đĽ4 , đĽ5 }, đđ = {đĽ2 , đĽ3 , đĽ4 }. Then, đ (đđ˘ ) = {đĽ1 , đĽ2 , đĽ3 , đĽ4 }, đ (đđ˘ ) = {đĽ1 , đĽ2 , đĽ3 , đĽ4 , đĽ5 , đĽ6 }, đ 0.5 (đđ˘ ) = {đĽ1 , đĽ2 , đĽ3 , đĽ4 , đĽ5 , đĽ6 }, đ (đđ ) = {đĽ3 , đĽ4 }, đ (đđ ) = {đĽ1 , đĽ2 , đĽ3 , đĽ4 }, đ 0.5 (đđ ) = {đĽ1 , đĽ2 , đĽ3 , đĽ4 }. And then we can have S(Z, đ (Z)) = (2/(2 × 3)) + (4/(2 × 5)) = 11/15, S(Z, đ (Z)) = (5/(2 × 6)) + (3/(2 × 4)) = 19/24, S(Z, đ 0.5 (Z)) = (1/2) + (3/(2 × 4)) = 7/8, S(Z, đ 0.5 (Z)) ⊞ S(Z, đ (Z)). Figure 3: 0.5-approximation set of an interval set. Proof. According to Definition 6, Let đ be a nonempty set of objects. Let đ â đ, đĽ â đ, and the membership degree of đĽ belonging to set đ is defined as óľ¨ óľ¨óľ¨ óľ¨đ ⊠[đĽ]đ óľ¨óľ¨óľ¨ đđđ (đĽ) = óľ¨ óľ¨óľ¨ óľ¨óľ¨ . óľ¨óľ¨[đĽ]đ óľ¨óľ¨ (7) Obviously, 0 ⊽ đđđ (đĽ) ⊽ 1. Definition 8 (đ-approximation set of set đ [20]). Let đ be a nonempty set of objects, and let knowledge space be đ/IND(đ ). Let đ â đ, đĽ â đ, and the membership degree belonging to set đ is óľ¨ óľ¨óľ¨ óľ¨đ ⊠[đĽ]đ óľ¨óľ¨óľ¨ đđđ (đĽ) = óľ¨ óľ¨óľ¨ óľ¨óľ¨ . óľ¨óľ¨[đĽ]đ óľ¨óľ¨ (8) đđđ (đĽ) If đ đ (đ) = {đĽ â đ | ⊞ đ, 1 ⊞ đ > 0}, then đ đ (đ) is called đ-approximation set of set đ. Definition 9 (đ-approximation set of set Z). Let Z = [đđ , đđ˘ ] = {đ â 2đ | đđ â đ â đđ˘ } and đ đ (Z) = [đ đ (đđ ), đ đ (đđ˘ )]; then đ đ (Z) is called đ-approximation set of the interval set Z. Figure 3 is probably helpful to understand Definition 9. In Figure 3, the outer circle standing for a set đđ˘ and inner circle standing for a set đđ represent an interval set Z, and each block represents an equivalence class. The black region represents đ 0.5 (đđ ), and the whole colored region (black and gray region) represents đ 0.5 (đđ˘ ). 4. Approximation Set đ 0.5 (Z) of an Interval Set Z Lemma 10 (see [20]). Let đ, đ, đ, and đ be all real numbers. If 0 < đ < đ, 0 < đ < đ, then đ/đ < (đ + đ)/(đ + đ). óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨ óľ¨óľ¨đđ˘ ⊠đ 0.5 (đđ˘ )óľ¨óľ¨óľ¨ óľ¨đ ⊠đ 0.5 (đđ )óľ¨óľ¨óľ¨ + S (Z, đ 0.5 (Z)) = óľ¨ óľ¨óľ¨ đ óľ¨ óľ¨ óľ¨, 2 óľ¨óľ¨đđ ⪠đ 0.5 (đđ )óľ¨óľ¨óľ¨ 2 óľ¨óľ¨óľ¨đđ˘ ⪠đ 0.5 (đđ˘ )óľ¨óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨đđ˘ ⊠đ (đđ˘ )óľ¨óľ¨óľ¨ óľ¨đ ⊠đ (đđ )óľ¨óľ¨óľ¨ S (Z, đ (Z)) = óľ¨ óľ¨óľ¨ đ óľ¨óľ¨ + óľ¨óľ¨ óľ¨. 2 óľ¨óľ¨đđ ⪠đ (đđ )óľ¨óľ¨ 2 óľ¨óľ¨đđ˘ ⪠đ (đđ˘ )óľ¨óľ¨óľ¨ (9) (1) There we first prove óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨ óľ¨óľ¨đđ ⊠đ 0.5 (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨đđ ⊠đ (đđ )óľ¨óľ¨óľ¨ ⊞ óľ¨ óľ¨ óľ¨ óľ¨. 2 óľ¨óľ¨óľ¨đđ ⪠đ 0.5 (đđ )óľ¨óľ¨óľ¨ 2 óľ¨óľ¨óľ¨đđ ⪠đ (đđ )óľ¨óľ¨óľ¨ (10) For all đĽ â đ 0.5 (đđ ), we have đđđ đ (đĽ) ⊞ 0.5. That is, óľ¨óľ¨ óľ¨ óľ¨[đĽ] ⊠đ óľ¨óľ¨ đđđ đ (đĽ) = óľ¨ óľ¨óľ¨ đ óľ¨óľ¨ đ óľ¨ âŠž 0.5. óľ¨óľ¨[đĽ]đ óľ¨óľ¨ (11) Because đ is an equivalence relation on đ, the classifications induced by đ can be denoted as [đĽ1 ]đ , [đĽ2 ]đ , . . . , [đĽđ ]đ . Then, đ 0.5 (đđ ) = {đĽ | đđđ đ (đĽ) ⊞ 0.5} = {đĽ | đđđ đ (đĽ) = 1} ⪠{đĽ | đ 0.5 ⊽ đđ (đĽ) < 1}. Obviously, {đĽ | đđđ đ (đĽ) = 1} = đ (đđ ), and then let {đĽ | 0.5 ⊽ đđđ đ (đĽ) < 1} = [đĽđ1 ]đ ⪠[đĽđ2 ]đ ⪠â â â ⪠[đĽđđ ]đ . So, đđ ⊠đ 0.5 (đđ ) = đđ ⊠(đ (đđ ) ⪠[đĽđ1 ]đ ⪠[đĽđ2 ]đ ⪠â â â ⪠[đĽđđ ]đ ). Because the intersection sets between any two elements in đ (đđ ), [đĽđ1 ]đ , [đĽđ2 ]đ , . . . , [đĽđđ ]đ are empty sets, we can get that óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨đđ ⊠đ 0.5 (đđ )óľ¨óľ¨óľ¨ = óľ¨óľ¨óľ¨đđ ⊠đ (đđ )óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđ1 ]đ óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđ2 ]đ óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđđ ]đ óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ = óľ¨óľ¨óľ¨đ (đđ )óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđ1 ]đ óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđ2 ]đ óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđđ ]đ óľ¨óľ¨óľ¨óľ¨ . (12) The Scientific World Journal Because đđ ⪠đ 0.5 (đđ ) = đđ ⪠([đĽđ1 ]đ â đđ ) ⪠([đĽđ2 ]đ â đđ ) ⪠â â â ⪠([đĽđđ ]đ â đđ ) and the intersection set between any two elements in đđ , ([đĽđ1 ]đ â đđ ), ([đĽđ2 ]đ â đđ ), . . . , ([đĽđđ ]đ â đđ ) is empty, we have that |đđ ⪠đ 0.5 (đđ )| = |đđ | + |([đĽđ1 ]đ â đđ )| + |([đĽđ2 ]đ â đđ )| + â â â + |([đĽđđ ]đ â đđ )|. So, óľ¨óľ¨ óľ¨ óľ¨óľ¨đđ ⊠đ 0.5 (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨đđ ⪠đ 0.5 (đđ )óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ = (óľ¨óľ¨óľ¨đ (đđ )óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđ1 ]đ óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđ2 ]đ óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ (13) + â â â + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđđ ]đ óľ¨óľ¨óľ¨óľ¨) óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ × (óľ¨óľ¨óľ¨đđ óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ1 ]đ â đđ )óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ2 ]đ â đđ )óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ â1 + â â â + óľ¨óľ¨óľ¨óľ¨([đĽđđ ]đ â đđ )óľ¨óľ¨óľ¨óľ¨) . Because óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨óľ¨[đĽđ1 ]đ ⊠đđ óľ¨óľ¨óľ¨ đ đđđ (đĽđ1 ) = óľ¨ óľ¨óľ¨[đĽ ] óľ¨óľ¨óľ¨ óľ¨óľ¨ đ1 đ óľ¨óľ¨ (14) óľ¨óľ¨óľ¨[đĽ ] ⊠đ óľ¨óľ¨óľ¨ óľ¨óľ¨ đ1 đ đ óľ¨óľ¨ ⊞ 0.5, = óľ¨ óľ¨óľ¨[đĽ ] ⊠đ óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨[đĽ ] â đ óľ¨óľ¨óľ¨ óľ¨óľ¨ đ1 đ đ óľ¨óľ¨ óľ¨óľ¨ đ1 đ đ óľ¨óľ¨ we have |[đĽđ1 ]đ âŠđđ | ⊞ |[đĽđ1 ]đ âđđ |. In the same way, according to |[đĽđ2 ]đ ⊠đđ | ⊞ |[đĽđ2 ]đ â đđ |, . . . , |[đĽđđ ]đ ⊠đđ | ⊞ |[đĽđđ ]đ â đđ | and Lemma 10, we can easily get óľ¨óľ¨óľ¨đđ ⊠đ 0.5 (đđ )óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨đđ ⪠đ 0.5 (đđ )óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ = (óľ¨óľ¨óľ¨đ (đđ )óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđ1 ]đ óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđ2 ]đ óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđđ ]đ óľ¨óľ¨óľ¨óľ¨) (15) óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ × (óľ¨óľ¨óľ¨đđ óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ1 ]đ â đđ )óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ2 ]đ â đđ )óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ â1 + â â â + óľ¨óľ¨óľ¨óľ¨([đĽđđ ]đ â đđ )óľ¨óľ¨óľ¨óľ¨) óľ¨ óľ¨óľ¨ óľ¨đ (đ )óľ¨óľ¨ ⊞ óľ¨ óľ¨óľ¨ óľ¨óľ¨đ óľ¨ . óľ¨óľ¨đđ óľ¨óľ¨ Therefore, óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨ óľ¨óľ¨đđ ⊠đ 0.5 (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨đđ ⊠đ (đđ )óľ¨óľ¨óľ¨ (16) óľ¨ óľ¨âŠž óľ¨ óľ¨. 2 óľ¨óľ¨óľ¨đđ ⪠đ 0.5 (đđ )óľ¨óľ¨óľ¨ 2 óľ¨óľ¨óľ¨đđ ⪠đ (đđ )óľ¨óľ¨óľ¨ (2) In a similar way with (1), we can have the inequality óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨ óľ¨óľ¨đđ˘ ⊠đ 0.5 (đđ˘ )óľ¨óľ¨óľ¨ óľ¨óľ¨đđ˘ ⊠đ (đđ˘ )óľ¨óľ¨óľ¨ ⊞ (17) óľ¨ óľ¨ óľ¨ óľ¨. 2 óľ¨óľ¨óľ¨đđ˘ ⪠đ 0.5 (đđ˘ )óľ¨óľ¨óľ¨ 2 óľ¨óľ¨óľ¨đđ˘ ⪠đ (đđ˘ )óľ¨óľ¨óľ¨ From (1) and (2), we have đ(Z, đ 0.5 (Z)) ⊞ đ(Z, đ (Z)). So, Theorem 12 has been proved completely. Theorem 12 shows that the similarity degree between an interval set Z and its approximation set đ 0.5 (Z) is better than the similarity degree between Z and its lower approximation set đ (Z). 5 Theorem 13. Let đ be a finite domain, let Z be an interval set on đ, and let đ be an equivalence relation on đ. If óľ¨óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨đđ â đ 0.5 (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨đđ óľ¨óľ¨ > óľ¨óľ¨ óľ¨, óľ¨ óľ¨ óľ¨óľ¨đ (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨đ (đđ ) â đ 0.5 (đđ ) â đđ óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨óľ¨đđ˘ óľ¨óľ¨óľ¨ óľ¨óľ¨đđ˘ â đ 0.5 (đđ˘ )óľ¨óľ¨ óľ¨ óľ¨ > óľ¨óľ¨ óľ¨, óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨đ (đđ˘ )óľ¨óľ¨ óľ¨óľ¨đ (đđ˘ ) â đ 0.5 (đđ˘ ) â đđ˘ óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ (18) then S(Z, đ 0.5 (Z)) ⊞ S(Z, đ (Z)). For example, let đ/đ = {{đĽ1 }, {đĽ2 , đĽ3 , đĽ4 , đĽ5 , đĽ6 }, {đĽ7 , đĽ8 , đĽ9 , đĽ10 }}, đđ˘ = {đĽ1 , đĽ2 , đĽ7 }, đđ = {đĽ1 , đĽ2 }. Then, đ (đđ˘ ) = {đĽ1 , đĽ2 , đĽ3 , đĽ4 , đĽ5 , đĽ6 , đĽ7 , đĽ8 , đĽ9 , đĽ10 }, đ (đđ˘ ) = {đĽ1 }, đ 0.5 (đđ˘ ) = {đĽ1 }, đ (đđ ) = {đĽ1 }, đ (đđ ) = {đĽ1 , đĽ2 , đĽ3 , đĽ4 , đĽ5 , đĽ6 }, đ 0.5 (đđ ) = {đĽ1 }, óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨đđ â đ 0.5 (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨đđ óľ¨óľ¨ 2 1 1 = = > óľ¨óľ¨ óľ¨ óľ¨ óľ¨= , óľ¨óľ¨đ (đđ )óľ¨óľ¨óľ¨ 6 3 óľ¨óľ¨óľ¨đ (đđ ) â đđ â đ 0.5 (đđ )óľ¨óľ¨óľ¨ 4 óľ¨ óľ¨ óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨óľ¨đđ˘ óľ¨óľ¨óľ¨ óľ¨óľ¨đđ˘ â đ 0.5 (đđ˘ )óľ¨óľ¨ 2 óľ¨ óľ¨ = 3 > óľ¨óľ¨ óľ¨óľ¨ 10 óľ¨óľ¨ óľ¨óľ¨ = 7 . óľ¨óľ¨đ (đđ˘ )óľ¨óľ¨ óľ¨óľ¨đ (đđ˘ ) â đđ˘ â đ 0.5 (đđ˘ )óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ (19) And then we can have S(Z, đ 0.5 (Z)) = (1/(2×2))+(1/(2× 3)) = 5/12, S(Z, đ (Z)) = (1/(2 × 6)) + (3/(2 × 10)) = 7/30, S(Z, đ 0.5 (Z)) ⊞ S(Z, đ (Z)). Proof. According to Definition 6, óľ¨óľ¨ óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨đđ˘ ⊠đ 0.5 (đđ˘ )óľ¨óľ¨óľ¨ óľ¨đ ⊠đ 0.5 (đđ )óľ¨óľ¨óľ¨ + S (Z, đ 0.5 (Z)) = óľ¨ óľ¨óľ¨ đ óľ¨ óľ¨ óľ¨, 2 óľ¨óľ¨đđ ⪠đ 0.5 (đđ )óľ¨óľ¨óľ¨ 2 óľ¨óľ¨óľ¨đđ˘ ⪠đ 0.5 (đđ˘ )óľ¨óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨đđ ⊠đ (đđ )óľ¨óľ¨óľ¨ óľ¨ óľ¨ + óľ¨óľ¨đđ˘ ⊠đ (đđ˘ )óľ¨óľ¨ . S (Z, đ (Z)) = óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨ 2 óľ¨óľ¨óľ¨đđ ⪠đ (đđ )óľ¨óľ¨óľ¨ 2 óľ¨óľ¨óľ¨đđ˘ ⪠đ (đđ˘ )óľ¨óľ¨óľ¨óľ¨ (20) (1) Let đ (đđ ) â đ 0.5 (đđ ) = [đĽđ1 ]đ ⪠[đĽđ2 ]đ ⪠â â â ⪠[đĽđđ ]đ , and the intersection sets between any two elements in [đĽđ1 ]đ , [đĽđ2 ]đ , . . . , [đĽđđ ]đ are empty sets. Because 0< đđđ đ óľ¨óľ¨ óľ¨ óľ¨óľ¨[đĽđ1 ] ⊠đđ óľ¨óľ¨óľ¨ óľ¨ óľ¨ đ (đĽđ1 ) = óľ¨óľ¨ óľ¨óľ¨ < 0.5, óľ¨óľ¨óľ¨[đĽđ1 ]đ óľ¨óľ¨óľ¨ (21) it is obvious that [đĽđ1 ]đ ⊠đđ ≠ đ. In the same way, we have [đĽđ2 ]đ ⊠đđ ≠ đ, . . . , [đĽđđ ]đ ⊠đđ ≠ đ. Then we have đđ ⊠đ 0.5 (đđ ) = đđ â ([đĽđ1 ]đ ⊠đđ ) â ([đĽđ2 ]đ ⊠đđ ) â â â â â ([đĽđđ ]đ ⊠đđ ) = đđ â (đđ â đ 0.5 (đđ )). Because the intersection sets between any two elements in [đĽđ1 ]đ ⊠đđ , [đĽđ2 ]đ ⊠đđ , . . . , [đĽđđ ]đ ⊠đđ are empty sets, we have đđ ⊠đ 0.5 (đđ ) = đđ â (đđ â đ 0.5 (đđ )), |đđ ⊠đ 0.5 (đđ )| = |đđ | â |đđ â đ 0.5 (đđ )|, and đđ ⪠đ 0.5 (đđ ) = đ (đđ ) â (([đĽđ1 ]đ â đđ ) ⪠([đĽđ2 ]đ â đđ )âŞâ â â âŞ([đĽđđ ]đ âđđ )). Because the intersection sets between any two elements in ([đĽđ1 ]đ âđđ ), ([đĽđ2 ]đ âđđ ), . . . , ([đĽđđ ]đ âđđ ) are empty sets, đđ ⪠đ 0.5 (đđ ) = đ (đđ ) â (đ (đđ ) â đ 0.5 (đđ ) â đđ ) 6 The Scientific World Journal and |đđ ⪠đ 0.5 (đđ )| = |đ (đđ )| â |(đ (đđ ) â đ 0.5 (đđ ) â đđ )| are held. So, óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨đđ óľ¨óľ¨ â óľ¨óľ¨đđ â đ 0.5 (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨đđ ⊠đ 0.5 (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨ óľ¨=óľ¨ óľ¨ óľ¨ óľ¨. óľ¨óľ¨đđ ⪠đ 0.5 (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨đ (đđ )óľ¨óľ¨óľ¨ â óľ¨óľ¨óľ¨(đ (đđ ) â đ 0.5 (đđ ) â đđ )óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ (22) For óľ¨óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨đđ â đ 0.5 (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨đđ óľ¨óľ¨ > óľ¨óľ¨ óľ¨, óľ¨ óľ¨ óľ¨óľ¨đ (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨đ (đđ ) â đ 0.5 (đđ ) â đđ óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ according to Lemma 11, we have óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨đđ óľ¨óľ¨ â óľ¨óľ¨đđ â đ 0.5 (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨đđ óľ¨óľ¨ ⊽ óľ¨óľ¨óľ¨đ (đ )óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨đ (đ )óľ¨óľ¨óľ¨ â óľ¨óľ¨óľ¨(đ (đ ) â đ (đ ) â đ )óľ¨óľ¨óľ¨ ; óľ¨óľ¨ óľ¨óľ¨ đ óľ¨óľ¨ đ óľ¨óľ¨ óľ¨óľ¨ đ 0.5 đ đ óľ¨óľ¨ that is to say, óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨đđ ⊠đ 0.5 (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨đđ ⊠đ (đđ )óľ¨óľ¨óľ¨ óľ¨. óľ¨óľ¨ óľ¨âŠžóľ¨ óľ¨óľ¨đđ ⪠đ 0.5 (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨đđ ⪠đ (đđ )óľ¨óľ¨óľ¨ óľ¨ óľ¨ (23) (24) (25) Therefore, we have óľ¨óľ¨ óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨đđ ⊠đ (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨đđ ⊠đ 0.5 (đđ )óľ¨óľ¨óľ¨ óľ¨ óľ¨ . ⊞ (26) óľ¨ óľ¨ óľ¨ óľ¨ 2 óľ¨óľ¨óľ¨đđ ⪠đ 0.5 (đđ )óľ¨óľ¨óľ¨ 2 óľ¨óľ¨óľ¨đđ ⪠đ (đđ )óľ¨óľ¨óľ¨ óľ¨ óľ¨ (2) In a similar way with (1), we can easily obtain the conclusion that óľ¨óľ¨ óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨đđ˘ ⊠đ (đđ˘ )óľ¨óľ¨óľ¨ óľ¨óľ¨đđ˘ ⊠đ 0.5 (đđ˘ )óľ¨óľ¨óľ¨ óľ¨ óľ¨ âŠž (27) óľ¨ óľ¨ óľ¨ óľ¨ 2 óľ¨óľ¨óľ¨đđ˘ ⪠đ 0.5 (đđ˘ )óľ¨óľ¨óľ¨ 2 óľ¨óľ¨óľ¨đđ˘ ⪠đ (đđ˘ )óľ¨óľ¨óľ¨ óľ¨ óľ¨ when óľ¨óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨đđ˘ â đ 0.5 (đđ˘ )óľ¨óľ¨óľ¨ óľ¨óľ¨đđ˘ óľ¨óľ¨ (28) óľ¨óľ¨ óľ¨. óľ¨óľ¨ > óľ¨óľ¨ óľ¨óľ¨đ (đđ˘ )óľ¨óľ¨ óľ¨óľ¨đ (đđ˘ ) â đ 0.5 (đđ˘ ) â đđ˘ óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ According to (1) and (2), the inequality S(Z, đ 0.5 (Z)) ⊞ S(Z, đ (Z)) is held. So, Theorem 13 has been proved successfully. Theorem 13 shows that, under some conditions, the similarity degree between an interval set Z and its approximation set đ 0.5 (Z) is better than the similarity degree between Z and its lower approximation set đ (Z). Theorem 14. Let đ be a finite domain, Z an interval set on đ, and đ an equivalence relation on đ. If 1 ⊞ đ > 0.5, then S(Z, đ 0.5 (Z)) ⊞ S(Z, đ đ (Z)) ⊞ đ(Z, đ (Z)). For example, let đ/đ = {{đĽ1 }, {đĽ2 , đĽ3 }, {đĽ4 , đĽ5 , đĽ6 }}, đđ˘ = {đĽ1 , đĽ2 , đĽ3 , đĽ4 , đĽ5 }, đđ = {đĽ1 , đĽ2 , đĽ3 }. Then, đ (đđ˘ ) = {đĽ1 , đĽ2 , đĽ3 , đĽ4 , đĽ5 , đĽ6 }, đ 0.5 (đđ˘ ) = {đĽ1 , đĽ2 , đĽ3 , đĽ4 , đĽ5 , đĽ6 }, đ (đđ˘ ) = {đĽ1 , đĽ2 , đĽ3 }, đ 0.75 (đđ˘ ) = {đĽ1 , đĽ2 , đĽ3 }, đ (đđ ) = {đĽ1 , đĽ2 , đĽ3 }, đ (đđ ) = {đĽ1 , đĽ2 , đĽ3 }, and đ 0.5 (đđ ) = {đĽ1 , đĽ2 , đĽ3 }, đ 0.75 (đđ ) = {đĽ1 , đĽ2 , đĽ3 }. And then we can have S(Z, đ 0.5 (Z)) = (3/(2 × 3)) + (5/(2 × 6)) = 11/12, S(Z, đ 0.75 (Z)) = (3/(2 × 3)) + (3/(2 × 5)) = 4/5, S(Z, đ (Z)) = (3/(2 × 3)) + (3/(2 × 6)) = 3/4, S(Z, đ (Z)) < S(Z, đ 0.75 (Z)) < S(Z, đ 0.5 (Z)). This example is in accordance with the theorem. Proof. (1) For all đĽ â đ 0.5 (đđ ), then đđđ đ (đĽ) ⊞ 0.5, which means óľ¨óľ¨ óľ¨ óľ¨[đĽ] ⊠đ óľ¨óľ¨ đđđ đ (đĽ) = óľ¨ óľ¨óľ¨ đ óľ¨óľ¨ đ óľ¨ âŠž 0.5. óľ¨óľ¨[đĽ]đ óľ¨óľ¨ (29) Because đ 0.5 (đđ ) = {đĽ | đđđ đ (đĽ) ⊞ 0.5} = {đĽ | đđđ đ (đĽ) = 1} ⪠{đĽ | 0.5 ⊽ đđđ đ (đĽ) < 1}, we can easily get {đĽ | đđđ đ (đĽ) = 1} = đ (đđ ). Let {đĽ | 0.5 ⊽ đđđ đ (đĽ) < 1} = [đĽđ1 ]đ ⪠[đĽđ2 ]đ ⪠â â â ⪠[đĽđđ ]đ and đ đ (đđ ) = {đĽ | đđđ đ (đĽ) ⊞ đ > 0.5} = {đĽ | đđđ đ (đĽ) = 1} ⪠{đĽ | 0.5 < đ ⊽ đđđ đ (đĽ) < 1}, and then we can get đ đ (đđ ) â đ 0.5 (đđ ). To simplify the proof, let {đĽ | 0.5 < đ ⊽ đđđ đ (đĽ) < 1} = [đĽđ1 ]đ ⪠[đĽđ2 ]đ ⪠â â â ⪠[đĽđđ ]đ and đ ⊽ đ in this paper. So, đđ ⊠đ đ (đđ ) = đđ ⊠(đ (đđ ) ⪠[đĽđ1 ]đ ⪠[đĽđ2 ]đ ⪠â â â ⪠[đĽđđ ]đ ). Because the intersection sets between any two elements in đ (đđ ), [đĽđ1 ]đ , [đĽđ2 ]đ , . . . , [đĽđđ ]đ are empty sets, we can easily get that |đđ ⊠đ 0.5 (đđ )| = |đđ ⊠đ (đđ )| + |đđ ⊠[đĽđ1 ]đ | + |đđ ⊠[đĽđ2 ]đ | + â â â + |đđ ⊠[đĽđđ ]đ | = |đ (đđ )| + |đđ ⊠[đĽđ1 ]đ | + |đđ ⊠[đĽđ2 ]đ | + â â â + |đđ ⊠[đĽđđ ]đ |. And óľ¨ óľ¨óľ¨ óľ¨óľ¨đđ ⊠đ 0.5 (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨đđ ⪠đ 0.5 (đđ )óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨óľ¨ = (óľ¨óľ¨đ (đđ )óľ¨óľ¨ + óľ¨óľ¨đđ ⊠[đĽđ1 ]đ óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨đđ ⊠[đĽđđ ] óľ¨óľ¨óľ¨ óľ¨ đ óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨ (30) + óľ¨óľ¨óľ¨đđ ⊠[đĽđđ+1 ] óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđđ ]đ óľ¨óľ¨óľ¨óľ¨) óľ¨ đ óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ × (óľ¨óľ¨óľ¨đđ óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ1 ]đ â đđ )óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨([đĽđđ ] â đđ )óľ¨óľ¨óľ¨ óľ¨ óľ¨ đ óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨ â1 + óľ¨óľ¨óľ¨([đĽđđ+1 ] â đđ )óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨([đĽđđ ]đ â đđ )óľ¨óľ¨óľ¨óľ¨) , óľ¨ óľ¨ đ and we have óľ¨óľ¨ óľ¨ óľ¨óľ¨đđ ⊠đ đ (đđ )óľ¨óľ¨óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨đđ ⪠đ đ (đđ )óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ = (óľ¨óľ¨óľ¨đ (đđ )óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđ1 ]đ óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđ2 ]đ óľ¨óľ¨óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨đđ ⊠[đĽđđ ] óľ¨óľ¨óľ¨) óľ¨ đ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ × (óľ¨óľ¨óľ¨đđ óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ1 ]đ â đđ )óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ2 ]đ â đđ )óľ¨óľ¨óľ¨óľ¨ (31) óľ¨óľ¨ óľ¨óľ¨ â1 + â â â + óľ¨óľ¨óľ¨([đĽđđ ] â đđ )óľ¨óľ¨óľ¨) . óľ¨ óľ¨ đ And because |đđ ⊠[đĽđđ+1 ]đ | + â â â + |đđ ⊠[đĽđđ ]đ | ⊞ |([đĽđđ+1 ]đ â đđ )| + â â â + |([đĽđđ ]đ â đđ )|, according to Lemma 10, the inequality óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨đđ ⊠đ 0.5 (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨đđ ⊠đ đ (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨đđ ⊠đ (đđ )óľ¨óľ¨óľ¨ ⊞ ⊞ (32) óľ¨óľ¨óľ¨đđ ⪠đ 0.5 (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨đđ ⪠đ đ (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨đđ ⪠đ (đđ )óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ is held. Therefore, we have óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨óľ¨đđ ⊠đ 0.5 (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨đđ ⊠đ đ (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨đđ ⊠đ (đđ )óľ¨óľ¨óľ¨ ⊞ ⊞ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨. 2 óľ¨óľ¨óľ¨đđ ⪠đ 0.5 (đđ )óľ¨óľ¨óľ¨ 2 óľ¨óľ¨óľ¨đđ ⪠đ đ (đđ )óľ¨óľ¨óľ¨ 2 óľ¨óľ¨óľ¨đđ ⪠đ (đđ )óľ¨óľ¨óľ¨ (33) The Scientific World Journal 7 (2) The inequality óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨đđ˘ ⊠đ đ (đđ˘ )óľ¨óľ¨óľ¨ óľ¨óľ¨đđ˘ ⊠đ (đđ˘ )óľ¨óľ¨óľ¨ óľ¨óľ¨đđ˘ ⊠đ 0.5 (đđ˘ )óľ¨óľ¨óľ¨ ⊞ ⊞ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ 2 óľ¨óľ¨óľ¨đđ˘ ⪠đ 0.5 (đđ˘ )óľ¨óľ¨óľ¨ 2 óľ¨óľ¨óľ¨đđ˘ ⪠đ đ (đđ˘ )óľ¨óľ¨óľ¨ 2 óľ¨óľ¨óľ¨đđ˘ ⪠đ (đđ˘ )óľ¨óľ¨óľ¨ (34) can be easily proved in a similar way to (1). According to (1) and (2), the inequality S(Z, đ 0.5 (Z)) ⊞ S(Z, đ đ (Z)) ⊞ đ(Z, đ (Z)) is held. Based on Theorems 13 and 14, Corollary 15 can be obtained easily as follows. Corollary 15. Let đ be a finite domain, Z an interval set on đ, and đ an equivalence relation on đ. Z â 2đ. If óľ¨óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨đđ â đ đ (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨đđ óľ¨óľ¨ óľ¨óľ¨ óľ¨, óľ¨>óľ¨ óľ¨óľ¨đ (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨đ (đđ ) â đ đ (đđ ) â đđ óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨đđ˘ â đ đ (đđ˘ )óľ¨óľ¨ óľ¨óľ¨đđ˘ óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨ , óľ¨óľ¨ > óľ¨óľ¨ óľ¨óľ¨óľ¨đ (đđ˘ )óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨đ (đđ˘ ) â đ đ (đđ˘ ) â đđ˘ óľ¨óľ¨óľ¨ (35) then S(Z, đ 0.5 (Z)) ⊞ đ(Z, đ đ (Z)) ⊞ đ(Z, đ (Z)). Theorem 16. Let đ be a finite domain, Z an interval set on đ, and đ an equivalence relation on đ. if 0.5 ⊽ đ 1 < đ 2 ⊽ 1, then S(Z, đ đ 1 (Z)) ⊞ S(Z, đ đ 2 (Z)). For example, đ/đ = {{đĽ1 }, {đĽ2 , đĽ3 }, {đĽ4 , đĽ5 , đĽ6 }, {đĽ7 , đĽ8 , đĽ9 , đĽ10 }}, đđ˘ = {đĽ1 , đĽ2 , đĽ3 , đĽ5 , đĽ6 , đĽ7 }, đđ = {đĽ1 , đĽ2 , đĽ3 , đĽ5 , đĽ6 }. Then, đ (đđ˘ ) = {đĽ1 , đĽ2 , đĽ3 , đĽ4 , đĽ5 , đĽ6 , đĽ7 , đĽ8 , đĽ9 , đĽ10 }, đ (đđ˘ ) = {đĽ1 , đĽ2 , đĽ3 }, đ 0.6 (đđ˘ ) = {đĽ1 , đĽ2 , đĽ3 , đĽ4 , đĽ5 , đĽ6 }, đ 0.8 (đđ˘ ) = {đĽ1 , đĽ2 , đĽ3 }, đ (đđ ) = {đĽ1 , đĽ2 , đĽ3 , đĽ4 , đĽ5 , đĽ6 }, đ (đđ ) = {đĽ1 , đĽ2 , đĽ3 }, đ 0.6 (đđ ) = {đĽ1 , đĽ2 , đĽ3 , đĽ4 , đĽ5 , đĽ6 }, đ 0.8 (đđ ) = {đĽ1 , đĽ2 , đĽ3 }. And then we can have S(Z, đ 0.6 (Z)) = (5/(2×6))+(5/(2× 7)) = 65/84, S(Z, đ 0.8 (Z)) = (3/(2×5))+(3/(2×7)) = 18/35, S(Z, đ 0.6 (Z)) > S(Z, đ 0.8 (Z)). This example is in accordance with the theorem. Proof. (1) For any đĽ â đ đ 1 (đđ ), we have óľ¨ óľ¨óľ¨ óľ¨[đĽ] ⊠đ óľ¨óľ¨ đđđ đ (đĽ) = óľ¨ óľ¨óľ¨ đ óľ¨óľ¨ đ óľ¨ âŠž đ 1 ⊞ 0.5. óľ¨óľ¨[đĽ]đ óľ¨óľ¨ And because the intersection sets between any two elements in đ (đđ ), [đĽđ1 ]đ , [đĽđ2 ]đ , . . . , [đĽđđ˘ ]đ are empty sets, we have óľ¨ óľ¨óľ¨ óľ¨ óľ¨ óľ¨óľ¨đđ ⊠đ đ 1 (đđ )óľ¨óľ¨óľ¨ = óľ¨óľ¨óľ¨óľ¨đđ ⊠đ (đđ )óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨đđ ⊠[đĽđ1 ] óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ đ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđ2 ]đ óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđV ]đ óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđđ˘ ]đ óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ = óľ¨óľ¨óľ¨đ (đđ )óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđ1 ]đ óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđ2 ]đ óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđV ]đ óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđđ˘ ]đ óľ¨óľ¨óľ¨óľ¨ , óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨óľ¨đđ ⊠đ đ 2 (đđ )óľ¨óľ¨óľ¨ = óľ¨óľ¨óľ¨đ (đđ )óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨đđ ⊠[đĽđ1 ]đ óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđ2 ]đ óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđV ]đ óľ¨óľ¨óľ¨óľ¨ . (37) According to đđ ⪠đ đ 1 (đđ ) = đđ ⪠([đĽđ1 ]đ â đđ ) ⪠([đĽđ2 ]đ â đđ ) ⪠â â â ⪠([đĽđV ]đ â đđ ) ⪠â â â ⪠([đĽđđ˘ ]đ â đđ ) and because the intersection sets between any two elements in đđ , ([đĽđ1 ]đ âđđ ), ([đĽđ2 ]đ â đđ ), . . . , ([đĽđV ]đ â đđ ), . . . , ([đĽđđ˘ ]đ â đđ ) are empty sets, we easily have óľ¨ óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨đđ ⪠đ đ 1 (đđ )óľ¨óľ¨óľ¨ = óľ¨óľ¨óľ¨óľ¨đđ óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨([đĽđ1 ] â đđ )óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ đ óľ¨óľ¨ óľ¨ óľ¨óľ¨ óľ¨ + óľ¨óľ¨óľ¨([đĽđ2 ]đ â đđ )óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨([đĽđV ]đ â đđ )óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨([đĽđđ˘ ]đ â đđ )óľ¨óľ¨óľ¨óľ¨ , óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨óľ¨đđ ⪠đ đ 2 (đđ )óľ¨óľ¨óľ¨ = óľ¨óľ¨óľ¨óľ¨đđ óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨([đĽđ1 ] â đđ )óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨([đĽđ2 ] â đđ )óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ đ đ óľ¨óľ¨ óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨([đĽđV ]đ â đđ )óľ¨óľ¨óľ¨ . (38) Therefore, óľ¨óľ¨ óľ¨ óľ¨óľ¨đđ ⊠đ đ 1 (đđ )óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨đđ ⪠đ đ 1 (đđ )óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ = (óľ¨óľ¨óľ¨đ (đđ )óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđ1 ]đ óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđV ]đ óľ¨óľ¨óľ¨óľ¨ (36) Because đ is an equivalence relation on đ, all the classifications induced by đ can be denoted by [đĽ1 ]đ , [đĽ2 ]đ , . . . , [đĽđ ]đ . We have đ đ 1 (đđ ) = {đĽ | đđđ đ (đĽ) ⊞ đ 1 } = {đĽ | đđđ đ (đĽ) = 1} ⪠{đĽ | đ 1 ⊽ đđđ đ (đĽ) < 1} and {đĽ | đđđ đ (đĽ) = 1} = đ (đđ ) as well as {đĽ | đ 1 ⊽ đđđ đ (đĽ) < 1} = [đĽđ1 ]đ ⪠[đĽđ2 ]đ ⪠â â â ⪠[đĽđđ˘ ]đ . We can also get đ đ 2 (đđ ) = {đĽ | đđđ đ (đĽ) ⊞ đ 2 } = {đĽ | đđđ đ (đĽ) = 1} âŞ{đĽ | đ 2 ⊽ đđđ đ (đĽ) < 1}. Let {đĽ | đ 2 ⊽ đđđ đ (đĽ) < 1} = [đĽđ1 ]đ âŞ[đĽđ2 ]đ âŞâ â â âŞ[đĽđV ]đ , where 0.5 ⊽ đ 1 < đ 2 ⊽ 1 and V ⊽ đ˘. So, đđ âŠđ đ 1 (đđ ) = đđ âŠ(đ (đđ )âŞ[đĽđ1 ]đ âŞ[đĽđ2 ]đ âŞâ â â âŞ[đĽđV ]đ âŞâ â â ⪠[đĽđđ˘ ]đ ), đđ âŠđ đ 2 (đđ ) = đđ âŠ(đ (đđ )âŞ[đĽđ1 ]đ âŞ[đĽđ2 ]đ âŞâ â â âŞ[đĽđV ]đ ). óľ¨ óľ¨ óľ¨ óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđV+1 ]đ óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđđ˘ ]đ óľ¨óľ¨óľ¨óľ¨) óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ × (óľ¨óľ¨óľ¨đđ óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ1 ]đ â đđ )óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨([đĽđV ]đ â đđ )óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ â1 + óľ¨óľ¨óľ¨óľ¨([đĽđV+1 ]đ â đđ )óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨([đĽđđ˘ ]đ â đđ )óľ¨óľ¨óľ¨óľ¨) , óľ¨óľ¨ óľ¨ óľ¨óľ¨đđ ⊠đ đ 2 (đđ )óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨đđ ⪠đ đ 2 (đđ )óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨óľ¨ óľ¨ óľ¨ óľ¨óľ¨đ (đđ )óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđ1 ]đ óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđV ]đ óľ¨óľ¨óľ¨óľ¨ = óľ¨ óľ¨ óľ¨óľ¨ óľ¨ óľ¨ óľ¨. óľ¨óľ¨óľ¨đđ óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨([đĽđ1 ]đ â đđ )óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨([đĽđV ]đ â đđ )óľ¨óľ¨óľ¨óľ¨ (39) 8 The Scientific World Journal According to óľ¨óľ¨ óľ¨ óľ¨óľ¨[đĽđV+1 ] ⊠đđ óľ¨óľ¨óľ¨ đ óľ¨ óľ¨ đ đđđ (đĽđV+1 ) = óľ¨ óľ¨óľ¨[đĽ ] óľ¨óľ¨óľ¨ óľ¨óľ¨ đV+1 đ óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨[đĽđV+1 ] ⊠đđ óľ¨óľ¨óľ¨ óľ¨ óľ¨ đ ⊞ đ 1 ⊞ 0.5, = óľ¨ óľ¨óľ¨[đĽ ] ⊠đ óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨[đĽ ] â đ óľ¨óľ¨óľ¨ óľ¨óľ¨ đV+1 đ đ óľ¨óľ¨ óľ¨óľ¨ đV+1 đ đ óľ¨óľ¨ (40) we have |[đĽđV+1 ]đ âŠđđ | ⊞ |[đĽđV+1 ]đ âđđ |. According to |[đĽđV+2 ]đ ⊠đđ | ⊞ |[đĽđV+2 ]đ â đđ |, . . . , |[đĽđđ˘ ]đ ⊠đđ | ⊞ |[đĽđđ˘ ]đ â đđ |, we have |đđ ⊠[đĽđV+1 ]đ | + â â â + |đđ ⊠[đĽđđ˘ ]đ | ⊞ |([đĽđV+1 ]đ â đđ )| + â â â + |([đĽđđ˘ ]đ â đđ )|. And based on Lemma 10, we can easily have óľ¨óľ¨óľ¨đ ⊠đ (đ )óľ¨óľ¨óľ¨ óľ¨óľ¨ đ đ2 đ óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨đđ ⪠đ đ 2 (đđ )óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨óľ¨ óľ¨óľ¨đ (đđ )óľ¨óľ¨ + óľ¨óľ¨đđ ⊠[đĽđ1 ]đ óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđV ]đ óľ¨óľ¨óľ¨óľ¨ =óľ¨ óľ¨ óľ¨ óľ¨óľ¨đđ óľ¨óľ¨ + óľ¨óľ¨óľ¨([đĽđ ] â đđ )óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨([đĽđ ] â đđ )óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ 1 đ V đ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ âŠ˝ (óľ¨óľ¨óľ¨đ (đđ )óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđ1 ]đ óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđV ]đ óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđV+1 ]đ óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ ⊠[đĽđđ˘ ]đ óľ¨óľ¨óľ¨óľ¨) (41) óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ × (óľ¨óľ¨óľ¨đđ óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ1 ]đ â đđ )óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨([đĽđV ]đ â đđ )óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ â1 + óľ¨óľ¨óľ¨óľ¨([đĽđV+1 ]đ â đđ )óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨([đĽđđ˘ ]đ â đđ )óľ¨óľ¨óľ¨óľ¨) óľ¨óľ¨ óľ¨ óľ¨óľ¨đđ ⊠đ đ 1 (đđ )óľ¨óľ¨óľ¨ óľ¨ óľ¨. = óľ¨óľ¨ óľ¨ óľ¨óľ¨đđ ⪠đ đ 1 (đđ )óľ¨óľ¨óľ¨ óľ¨ óľ¨ Theorem 17. Let đ be a finite domain, Z an interval set on đ, and đ and đ ó¸ two equivalence relations on đ. Let [đĽđđĄ ]đ be one granule which is divided into two subgranules marked as [đĽđ1đĄ ]đ ó¸ and [đĽđ2đĄ ]đ ó¸ . If Therefore, óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨đđ ⊠đ đ 2 (đđ )óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ âŠ˝ óľ¨óľ¨đđ ⊠đ đ 1 (đđ )óľ¨óľ¨ . óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨ 2 óľ¨óľ¨óľ¨đđ ⪠đ đ 2 (đđ )óľ¨óľ¨óľ¨ 2 óľ¨óľ¨óľ¨đđ ⪠đ đ 1 (đđ )óľ¨óľ¨óľ¨óľ¨ (2) In the same way as (1), the inequality óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨đđ˘ ⊠đ đ 2 (đđ˘ )óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ âŠ˝ óľ¨óľ¨đđ˘ ⊠đ đ 1 (đđ˘ )óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨ 2 óľ¨óľ¨óľ¨đđ˘ ⪠đ đ 2 (đđ˘ )óľ¨óľ¨óľ¨ 2 óľ¨óľ¨óľ¨đđ˘ ⪠đ đ 1 (đđ˘ )óľ¨óľ¨óľ¨óľ¨ of rough set are a key issue [21, 22]. Many researchers try to discover the change rules of uncertainty in rough set model [23, 24]. And we also find many change rules of uncertain concept in different knowledge spaces in our other papers [20]. In this paper, we continue to discuss the change rules of the similarity degree S(Z, đ 0.5 (Z)) in Pawlakâs approximation spaces with different knowledge granularities. In this paper, we focus on discussing how the similarity degree between Z and đ 0.5 (Z) changes when the granules are divided into more subgranules in Pawlakâs approximation space. In other words, it is an important issue concerning how S(Z, đ 0.5 (Z)) changes with different knowledge granularities in Pawlakâs approximation space. Let [đĽ1 ]đ , [đĽ2 ]đ , . . . , [đĽđ ]đ be classifications of đ under equivalence relation đ . Let [đĽ1 ]đ ó¸ , [đĽ2 ]đ ó¸ , . . . , [đĽđ ]đ ó¸ be classifications of đ under equivalence relation đ ó¸ . If đ ó¸ â đ , then [đĽđ ]đ ó¸ â [đĽđ ]đ (1 ⤠đ ⤠đ). And then, đ/đ ó¸ is called a refinement of đ/đ , which is written as đ/đ ó¸ âş đ/đ . If âđĽđ â đ, then [đĽđ ]đ ó¸ â [đĽđ ]đ . And then, đ/đ ó¸ is called a strict refinement of đ/đ , which is written as đ/đ ó¸ âş đ/đ . Next, we will analyze the relationship between ó¸ (Z)). Let đ/đ ó¸ âş đ/đ ; in S(Z, đ 0.5 (Z)) and S(Z, đ 0.5 other words, for all đĽ â đ, [đĽ]đ ó¸ â [đĽ]đ is always satisfied, and âđŚ â đ, [đŚ]đ ó¸ â [đŚ]đ . And then, there must be two or more granules in đ/đ ó¸ whose union is [đŚ]đ . To simplify the proof, we suppose that there is just only one granule which is divided into two subgranules, denoted by [đĽđ1đĄ ]đ ó¸ and [đĽđ2đĄ ]đ ó¸ in đ/đ ó¸ , and other granules keep unchanged. There are 9 cases, and only 6 cases are possible. (42) (43) is held. According to (1) and (2), the inequality S(Z, đ đ 1 (Z)) ⊞ S(Z, đ đ 2 (Z)) is held. So, the proof of Theorem 16 has been completed successfully. Theorems 14 and 16 show that the similarity degree between an interval set Z and its approximation set đ đ (Z) is a monotonically decreasing function with the parameter đ, and the similarity degree reaches its maximum value when đ = 0.5. 5. The Change Rules of Similarity in Different Knowledge Granularity Spaces In different Pawlakâs approximation spaces with different knowledge granularities, the change rules of the uncertainty óľ¨ óľ¨óľ¨ 2 óľ¨óľ¨[đĽđ ] ⊠đđ óľ¨óľ¨óľ¨ đĄ óľ¨, óľ¨ đ (đđ , đ 0.5 (đđ )) ⊞ óľ¨ óľ¨óľ¨[đĽ2 ] â đ óľ¨óľ¨óľ¨ đ óľ¨óľ¨ óľ¨óľ¨ đđĄ óľ¨ óľ¨óľ¨ 2 óľ¨óľ¨[đĽđ ] ⊠đđ˘ óľ¨óľ¨óľ¨ đĄ óľ¨. óľ¨ đ (đđ˘ , đ 0.5 (đđ˘ )) ⊞ óľ¨ óľ¨óľ¨[đĽ2 ] â đ óľ¨óľ¨óľ¨ đ˘ óľ¨óľ¨ óľ¨óľ¨ đđĄ (44) ó¸ Then, S(Z, đ 0.5 (Z)) ⊽ S(Z, đ 0.5 (Z)). Proof. There are 6 possible cases which will be discussed one by one as follows. (1) [đĽđđĄ ]đ is contained in both positive region of đđ and positive region of đđ˘ . In this case, obviously ó¸ (Z)) is held. S(Z, đ 0.5 (Z)) = S(Z, đ 0.5 (2) [đĽđđĄ ]đ is contained in both positive region of đđ and negative region of đđ˘ . In this case, obviously, ó¸ (Z)) is held. S(Z, đ 0.5 (Z)) = S(Z, đ 0.5 (3) [đĽđđĄ ]đ is contained in both negative region of đđ and negative region of đđ˘ . In this case, obviously, ó¸ (Z)) is held. S(Z, đ 0.5 (Z)) = S(Z, đ 0.5 The Scientific World Journal 9 (4) [đĽđđĄ ]đ is contained in both negative region of đđ and boundary region of đđ˘ . In this case, óľ¨óľ¨ ó¸ óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨đ 0.5 (đđ ) ⊠đđ óľ¨óľ¨óľ¨ óľ¨óľ¨đ 0.5 (đđ ) ⊠đđ óľ¨óľ¨óľ¨ óľ¨ óľ¨ (45) = óľ¨ óľ¨ óľ¨ óľ¨ ó¸ 2 óľ¨óľ¨óľ¨đ 0.5 (đđ ) ⪠đđ óľ¨óľ¨óľ¨ 2 óľ¨óľ¨óľ¨đ 0.5 (đđ ) ⪠đđ óľ¨óľ¨óľ¨ ó¸ (đđ˘ ), |[đĽđ1đĄ ]đ ó¸ ⊠đđ˘ |/(|[đĽđ1đĄ ]đ ó¸ ⊠đđ˘ | + |[đĽđ1đĄ ]đ ó¸ â For [đĽđ11 ]đ ó¸ â đ 0.5 đđ˘ |) ⊞ 0.5, which means |[đĽđ1đĄ ]đ ó¸ ⊠đđ˘ | ⊞ |[đĽđ1đĄ ]đ ó¸ â đđ˘ |. According to Lemma 10, we have is held obviously. Next, we discuss the relationship between óľ¨óľ¨ óľ¨ óľ¨óľ¨đ 0.5 (đđ˘ ) ⊠đđ˘ óľ¨óľ¨óľ¨ óľ¨, óľ¨ 2 óľ¨óľ¨óľ¨đ 0.5 (đđ˘ ) ⪠đđ˘ óľ¨óľ¨óľ¨ (46) óľ¨óľ¨óľ¨đ ó¸ (đ ) ⊠đ óľ¨óľ¨óľ¨ óľ¨óľ¨ 0.5 đ˘ đ˘ óľ¨óľ¨ óľ¨. óľ¨ ó¸ 2 óľ¨óľ¨óľ¨đ 0.5 (đđ˘ ) ⪠đđ˘ óľ¨óľ¨óľ¨ Let đ 0.5 (đđ˘ ) = đ (đđ˘ ) ⪠[đĽđ1 ]đ ⪠[đĽđ2 ]đ ⪠â â â ⪠[đĽđđ ]đ . Let BNđ (đđ˘ ) = [đĽđ1 ]đ ⪠[đĽđ2 ]đ ⪠â â â ⪠[đĽđđ ]đ where đ ⊞ đ. When [đĽđđĄ ]đ is in boundary region of đđ˘ , we should further discuss this situation. To simplify the proof, we suppose that there is just only one granule marked as [đĽđđĄ ]đ in đ/đ which is divided into two subgranules marked as [đĽđ1đĄ ]đ ó¸ and [đĽđ2đĄ ]đ ó¸ in đ/đ ó¸ . And the other granules keep unchanged. (49) (a) If đ < đĄ ⊽ đ, then [đĽđđĄ ]đ â̸ đ 0.5 (đđ˘ ). ó¸ ó¸ (1) If [đĽđ1đĄ ]đ ó¸ â đ 0.5 (đđ˘ ), [đĽđ2đĄ ]đ ó¸ â̸ đ 0.5 (đđ˘ ). From the proof of Theorem 12, we know óľ¨óľ¨ óľ¨ óľ¨óľ¨đđ˘ ⊠đ 0.5 (đđ˘ )óľ¨óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨đđ˘ ⪠đ 0.5 (đđ˘ )óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ = (óľ¨óľ¨óľ¨đ (đđ˘ )óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđ1 ]đ óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđ2 ]đ óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ (47) + â â â + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđđ ]đ óľ¨óľ¨óľ¨óľ¨) óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ × (óľ¨óľ¨óľ¨đđ˘ óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ1 ]đ â đđ˘ )óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ2 ]đ â đđ˘ )óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ â1 + â â â + óľ¨óľ¨óľ¨óľ¨([đĽđđ ]đ â đđ˘ )óľ¨óľ¨óľ¨óľ¨) . ó¸ Because [đĽđ1đĄ ]đ ó¸ ⪠[đĽđ2đĄ ]đ ó¸ = [đĽđđĄ ]đ , [đĽđ1đĄ ]đ ó¸ â đ 0.5 (đđ˘ ), and 2 ó¸ [đĽđđĄ ]đ ó¸ â̸ đ 0.5 (đđ˘ ), we have óľ¨óľ¨óľ¨đ ⊠đ ó¸ (đ )óľ¨óľ¨óľ¨ óľ¨óľ¨ đ˘ đ˘ óľ¨óľ¨ 0.5 óľ¨óľ¨ ó¸ (đ )óľ¨óľ¨ óľ¨óľ¨đđ˘ ⪠đ 0.5 đ˘ óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ = (óľ¨óľ¨óľ¨óľ¨đ ó¸ (đđ˘ )óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđ1 ]đ ó¸ óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđ2 ]đ ó¸ óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđđ ]đ ó¸ óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđ1đĄ ]đ ó¸ óľ¨óľ¨óľ¨óľ¨) óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ × (óľ¨óľ¨óľ¨đđ˘ óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ1 ]đ ó¸ â đđ˘ )óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ2 ]đ ó¸ â đđ˘ )óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ â1 (48) + â â â + óľ¨óľ¨óľ¨óľ¨([đĽđđ ]đ ó¸ â đđ˘ )óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ1đĄ ]đ ó¸ â đđ˘ )óľ¨óľ¨óľ¨óľ¨) óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ = (óľ¨óľ¨óľ¨đ (đđ˘ )óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđ1 ]đ óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđ2 ]đ óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđđ ]đ óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđ1đĄ ]đ ó¸ óľ¨óľ¨óľ¨óľ¨) óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ × (óľ¨óľ¨óľ¨đđ˘ óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ1 ]đ â đđ˘ )óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ2 ]đ â đđ˘ )óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ â1 + â â â + óľ¨óľ¨óľ¨óľ¨([đĽđđ ]đ â đđ˘ )óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ1đĄ ]đ ó¸ â đđ˘ )óľ¨óľ¨óľ¨óľ¨) . óľ¨óľ¨ ó¸ óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨đ 0.5 (đđ˘ ) ⊠đđ˘ óľ¨óľ¨óľ¨ óľ¨óľ¨đ 0.5 (đđ˘ ) ⊠đđ˘ óľ¨óľ¨óľ¨ óľ¨ óľ¨ . óľ¨âŠ˝ óľ¨ ó¸ óľ¨ óľ¨ 2 óľ¨óľ¨óľ¨đ 0.5 (đđ˘ ) ⪠đđ˘ óľ¨óľ¨óľ¨ 2 óľ¨óľ¨óľ¨đ 0.5 (đđ˘ ) ⪠đđ˘ óľ¨óľ¨óľ¨ ó¸ ó¸ (2) If [đĽđ1đĄ ]đ ó¸ â̸ đ 0.5 (đđ˘ ), [đĽđ2đĄ ]đ ó¸ â̸ đ 0.5 (đđ˘ ), then óľ¨óľ¨ ó¸ óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨đ 0.5 (đđ˘ ) ⊠đđ˘ óľ¨óľ¨óľ¨ óľ¨óľ¨đ 0.5 (đđ˘ ) ⊠đđ˘ óľ¨óľ¨óľ¨ óľ¨ óľ¨ . = óľ¨ óľ¨ óľ¨ óľ¨ ó¸ 2 óľ¨óľ¨óľ¨đ 0.5 (đđ˘ ) ⪠đđ˘ óľ¨óľ¨óľ¨ 2 óľ¨óľ¨óľ¨đ 0.5 (đđ˘ ) ⪠đđ˘ óľ¨óľ¨óľ¨ (50) ó¸ Because [đĽđđĄ ]đ â̸ đ 0.5 (đđ˘ ), the case that [đĽđ11 ]đ ó¸ â đ 0.5 (đđ˘ ) 2 ó¸ and [đĽđ1 ]đ ó¸ â đ 0.5 (đđ˘ ) is impossible. (b) If 1 ⊽ đĄ ⊽ đ, then [đĽđđĄ ]đ â đ 0.5 (đđ˘ ). ó¸ ó¸ (đđ˘ ) and [đĽđ2đĄ ]đ ó¸ â đ 0.5 (đđ˘ ), then we (1) If [đĽđ1đĄ ]đ ó¸ â đ 0.5 can easily have óľ¨óľ¨ ó¸ óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨đ 0.5 (đđ˘ ) ⊠đđ˘ óľ¨óľ¨óľ¨ óľ¨óľ¨đ 0.5 (đđ˘ ) ⊠đđ˘ óľ¨óľ¨óľ¨ óľ¨ óľ¨ . óľ¨= óľ¨ ó¸ óľ¨ óľ¨ 2 óľ¨óľ¨óľ¨đ 0.5 (đđ˘ ) ⪠đđ˘ óľ¨óľ¨óľ¨ 2 óľ¨óľ¨óľ¨đ 0.5 (đđ˘ ) ⪠đđ˘ óľ¨óľ¨óľ¨ (51) ó¸ ó¸ (2) If [đĽđ1đĄ ]đ ó¸ â đ 0.5 (đđ˘ ) and [đĽđ2đĄ ]đ ó¸ â̸ đ 0.5 (đđ˘ ), then óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨ 2 óľ¨óľ¨đ 0.5 (đđ˘ ) ⊠đđ˘ óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨[đĽđđĄ ] ⊠đđ˘ óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨đ 0.5 (đđ˘ ) ⪠đđ˘ óľ¨óľ¨óľ¨ ⊞ óľ¨óľ¨óľ¨[đĽ2 ] â đ óľ¨óľ¨óľ¨ . óľ¨ óľ¨ óľ¨óľ¨ đđĄ đ˘ óľ¨óľ¨ (52) ó¸ Because [đĽđ2đĄ ]đ ó¸ â̸ đ 0.5 (đđ˘ ), we have the following. (i) If [đĽđ2đĄ ]đ ó¸ ⊠đđ˘ = đ, then we have |đđ˘ ⊠[đĽđ1đĄ ]đ | = |đđ˘ ⊠[đĽđđĄ ]đ | and |([đĽđ1đĄ ]đ ó¸ â đđ˘ )| < |([đĽđđĄ ]đ â đđ˘ )|. Therefore, óľ¨óľ¨ óľ¨ ó¸ óľ¨óľ¨đđ˘ ⊠đ 0.5 (đđ˘ )óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨óľ¨ ó¸ (đ )óľ¨óľ¨ óľ¨óľ¨đđ˘ ⪠đ 0.5 đ˘ óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ = (óľ¨óľ¨óľ¨óľ¨đ ó¸ (đđ˘ )óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđ1 ]đ ó¸ óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđ2 ]đ ó¸ óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđ1đĄ ]đ ó¸ óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđđ ]đ ó¸ óľ¨óľ¨óľ¨óľ¨) óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ × (óľ¨óľ¨óľ¨đđ˘ óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ1 ]đ ó¸ â đđ˘ )óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ2 ]đ ó¸ â đđ˘ )óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ â1 + â â â + óľ¨óľ¨óľ¨óľ¨([đĽđ1đĄ ]đ ó¸ â đđ˘ )óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨([đĽđđ ]đ ó¸ â đđ˘ )óľ¨óľ¨óľ¨óľ¨) óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ = (óľ¨óľ¨óľ¨đ (đđ˘ )óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđ1 ]đ óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđ2 ]đ óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđđĄ ]đ óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđđ ]đ óľ¨óľ¨óľ¨óľ¨) 10 The Scientific World Journal óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ × (óľ¨óľ¨óľ¨đđ˘ óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ1 ]đ â đđ˘ )óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ2 ]đ â đđ˘ )óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ â1 + â â â + óľ¨óľ¨óľ¨óľ¨([đĽđ1đĄ ]đ ó¸ â đđ˘ )óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨([đĽđđ ]đ â đđ˘ )óľ¨óľ¨óľ¨óľ¨) óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ > (óľ¨óľ¨óľ¨đ (đđ˘ )óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđ1 ]đ óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđ2 ]đ óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđđ ]đ óľ¨óľ¨óľ¨óľ¨) óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ × (óľ¨óľ¨óľ¨đđ˘ óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ1 ]đ â đđ˘ )óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ2 ]đ â đđ˘ )óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ â1 + â â â + óľ¨óľ¨óľ¨óľ¨([đĽđđ ]đ â đđ˘ )óľ¨óľ¨óľ¨óľ¨) óľ¨ óľ¨óľ¨ óľ¨đ ⊠đ 0.5 (đđ˘ )óľ¨óľ¨óľ¨ = óľ¨óľ¨óľ¨ đ˘ óľ¨. óľ¨óľ¨đđ˘ ⪠đ 0.5 (đđ˘ )óľ¨óľ¨óľ¨ (53) (ii) If [đĽđ1đĄ ]đ ó¸ â đđ˘ , then |[đĽđ1đĄ ]đ ó¸ âŠđđ˘ | = |[đĽđ1đĄ ]đ ó¸ |. Therefore, óľ¨óľ¨ óľ¨ ó¸ óľ¨óľ¨đđ˘ ⊠đ 0.5 (đđ˘ )óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨óľ¨ ó¸ (đ )óľ¨óľ¨ óľ¨óľ¨đđ˘ ⪠đ 0.5 đ˘ óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ = (óľ¨óľ¨óľ¨óľ¨đ ó¸ (đđ˘ )óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđ1 ]đ ó¸ óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđ2 ]đ ó¸ óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđ1đĄ ]đ ó¸ óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđđ ]đ ó¸ óľ¨óľ¨óľ¨óľ¨) óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ × (óľ¨óľ¨óľ¨đđ˘ óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ1 ]đ ó¸ â đđ˘ )óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ2 ]đ ó¸ â đđ˘ )óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ â1 + óľ¨óľ¨óľ¨óľ¨[đĽđđĄ+1 ]đ â đđ˘ óľ¨óľ¨óľ¨óľ¨ â â â + óľ¨óľ¨óľ¨óľ¨([đĽđđ ]đ â đđ˘ )óľ¨óľ¨óľ¨óľ¨) (54) Because óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨ 2 óľ¨óľ¨đđ˘ ⊠đ 0.5 (đđ˘ )óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨[đĽđđĄ ] ⊠đđ˘ óľ¨óľ¨óľ¨ óľ¨óľ¨ óľ¨âŠžóľ¨ óľ¨, óľ¨óľ¨đđ˘ ⪠đ 0.5 (đđ˘ )óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨[đĽđ2 ] â đđ˘ óľ¨óľ¨óľ¨ óľ¨ đĄ óľ¨ (55) according to Lemma 11, we have óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨ ó¸ óľ¨óľ¨đ 0.5 (đđ˘ ) ⊠đđ˘ óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨đ 0.5 (đđ˘ ) ⊠đđ˘ óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨đ 0.5 (đđ˘ ) ⪠đđ˘ óľ¨óľ¨óľ¨ ⊽ óľ¨óľ¨óľ¨đ ó¸ (đđ˘ ) ⪠đđ˘ óľ¨óľ¨óľ¨ . óľ¨ óľ¨ óľ¨ 0.5 óľ¨ óľ¨óľ¨ óľ¨ ó¸ óľ¨óľ¨đđ˘ ⊠đ 0.5 (đđ˘ )óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨óľ¨ ó¸ (đ )óľ¨óľ¨ óľ¨óľ¨đđ˘ ⪠đ 0.5 đ˘ óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ = (óľ¨óľ¨óľ¨óľ¨đ ó¸ (đđ˘ )óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđ1 ]đ ó¸ óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđ2 ]đ ó¸ óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđ1đĄ ]đ ó¸ óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđđ ]đ ó¸ óľ¨óľ¨óľ¨óľ¨) óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ × (óľ¨óľ¨óľ¨đđ˘ óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ1 ]đ ó¸ â đđ˘ )óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ2 ]đ ó¸ â đđ˘ )óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ â1 + â â â + óľ¨óľ¨óľ¨óľ¨([đĽđ1đĄ ]đ ó¸ â đđ˘ )óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨([đĽđđ ]đ ó¸ â đđ˘ )óľ¨óľ¨óľ¨óľ¨) óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ = (óľ¨óľ¨óľ¨đ (đđ˘ )óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđ1 ]đ óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđ2 ]đ óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨[đĽđ1đĄ ]đ ó¸ óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđđ ]đ óľ¨óľ¨óľ¨óľ¨) óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ × (óľ¨óľ¨óľ¨đđ˘ óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ1 ]đ â đđ˘ )óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ2 ]đ â đđ˘ )óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ â1 + â â â + óľ¨óľ¨óľ¨óľ¨[đĽđ1đĄ ]đ ó¸ â đđ˘ óľ¨óľ¨óľ¨óľ¨ â â â + óľ¨óľ¨óľ¨óľ¨([đĽđđ ]đ â đđ˘ )óľ¨óľ¨óľ¨óľ¨) óľ¨ óľ¨óľ¨ óľ¨ óľ¨ óľ¨óľ¨đđ˘ ⊠đ 0.5 (đđ˘ )óľ¨óľ¨óľ¨ â óľ¨óľ¨óľ¨óľ¨[đĽđ2đĄ ]đ ó¸ ⊠đđ˘ óľ¨óľ¨óľ¨óľ¨ =óľ¨ óľ¨ óľ¨. óľ¨óľ¨đđ˘ ⪠đ 0.5 (đđ˘ )óľ¨óľ¨óľ¨ â óľ¨óľ¨óľ¨[đĽ2 ] â đđ˘ óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨óľ¨ đđĄ đ ó¸ óľ¨óľ¨ (57) Because óľ¨ óľ¨ óľ¨ óľ¨ â1 + â â â + óľ¨óľ¨óľ¨óľ¨([đĽđ1đĄ ]đ ó¸ â đđ˘ )óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨([đĽđđ ]đ ó¸ â đđ˘ )óľ¨óľ¨óľ¨óľ¨) óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ = (óľ¨óľ¨óľ¨đ (đđ˘ )óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđ1 ]đ óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđ2 ]đ óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨[đĽđ1đĄ ]đ ó¸ óľ¨óľ¨óľ¨óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨đđ˘ ⊠[đĽđđ ]đ óľ¨óľ¨óľ¨óľ¨) óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ × (óľ¨óľ¨óľ¨đđ˘ óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ1 ]đ â đđ˘ )óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨([đĽđ2 ]đ â đđ˘ )óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨ + â â â + óľ¨óľ¨óľ¨óľ¨[đĽđđĄâ1 ]đ â đđ˘ óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨óľ¨ óľ¨ óľ¨ óľ¨óľ¨đđ˘ ⊠đ 0.5 (đđ˘ )óľ¨óľ¨óľ¨ â óľ¨óľ¨óľ¨óľ¨[đĽđ2đĄ ]đ ó¸ ⊠đđ˘ óľ¨óľ¨óľ¨óľ¨ =óľ¨ óľ¨ óľ¨. óľ¨óľ¨đđ˘ ⪠đ 0.5 (đđ˘ )óľ¨óľ¨óľ¨ â óľ¨óľ¨óľ¨[đĽ2 ] â đđ˘ óľ¨óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨ óľ¨óľ¨ đđĄ đ ó¸ (iii) If [đĽđ1đĄ ]đ ó¸ â BNđ ó¸ (đđ˘ ) and [đĽđ2đĄ ]đ ó¸ â BNđ ó¸ (đđ˘ ), because ó¸ ó¸ (đđ˘ ) and [đĽđ2đĄ ]đ ó¸ â̸ đ 0.5 (đđ˘ ), we have [đĽđ1đĄ ]đ ó¸ â đ 0.5 (56) óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨ 2 óľ¨óľ¨đđ˘ ⊠đ 0.5 (đđ˘ )óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨[đĽđđĄ ] ⊠đđ˘ óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨đđ˘ ⪠đ 0.5 (đđ˘ )óľ¨óľ¨óľ¨ ⊞ óľ¨óľ¨óľ¨[đĽ2 ] â đ óľ¨óľ¨óľ¨ , óľ¨ óľ¨ óľ¨óľ¨ đđĄ đ˘ óľ¨óľ¨ according to Lemma 11, we have óľ¨ ó¸ óľ¨ óľ¨óľ¨óľ¨đ 0.5 (đđ˘ ) ⊠đđ˘ óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨đ 0.5 (đđ˘ ) ⊠đđ˘ óľ¨óľ¨óľ¨óľ¨ óľ¨ óľ¨âŠ˝óľ¨ óľ¨óľ¨ óľ¨ óľ¨ ó¸ óľ¨. (đđ˘ ) ⪠đđ˘ óľ¨óľ¨óľ¨ óľ¨óľ¨đ 0.5 (đđ˘ ) ⪠đđ˘ óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨đ 0.5 (58) (59) According to (a) and (b) above, we have S(Z, đ 0.5 (Z)) ⊽ ó¸ (Z)) when S(Z, đ 0.5 óľ¨óľ¨ óľ¨ óľ¨óľ¨ 2 óľ¨óľ¨ óľ¨óľ¨đ 0.5 (đđ˘ ) ⊠đđ˘ óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨[đĽđđĄ ] ⊠đđ˘ óľ¨óľ¨óľ¨ (60) óľ¨óľ¨ óľ¨âŠžóľ¨ óľ¨. óľ¨óľ¨đ 0.5 (đđ˘ ) ⪠đđ˘ óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨[đĽđ2 ] â đđ˘ óľ¨óľ¨óľ¨ óľ¨ đĄ óľ¨ (5) [đĽđđĄ ]đ is contained in boundary region of đđ and positive region of đđ˘ . In this case, óľ¨ ó¸ óľ¨ óľ¨óľ¨óľ¨đ 0.5 (đđ˘ ) ⊠đđ˘ óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨đ 0.5 (đđ˘ ) ⊠đđ˘ óľ¨óľ¨óľ¨óľ¨ óľ¨=óľ¨ óľ¨ (61) óľ¨óľ¨ óľ¨ óľ¨ ó¸ óľ¨. (đđ˘ ) ⪠đđ˘ óľ¨óľ¨óľ¨ óľ¨óľ¨đ 0.5 (đđ˘ ) ⪠đđ˘ óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨đ 0.5 Next, we discuss the relationship between óľ¨óľ¨óľ¨đ 0.5 (đđ ) ⊠đđ óľ¨óľ¨óľ¨ óľ¨ óľ¨, óľ¨óľ¨ óľ¨ óľ¨óľ¨đ 0.5 (đđ ) ⪠đđ óľ¨óľ¨óľ¨ óľ¨óľ¨ ó¸ óľ¨óľ¨ óľ¨óľ¨óľ¨đ 0.5 (đđ ) ⊠đđ óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨đ ó¸ (đđ ) ⪠đđ óľ¨óľ¨óľ¨ . óľ¨ 0.5 óľ¨ (62) The Scientific World Journal 11 Similar to (a) and (b) in (4), when óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨ 2 óľ¨óľ¨đđ ⊠đ 0.5 (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨[đĽđđĄ ] ⊠đđ óľ¨óľ¨óľ¨ óľ¨óľ¨ óľ¨âŠžóľ¨ óľ¨, óľ¨óľ¨đđ ⪠đ 0.5 (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨[đĽđ2 ] â đđ óľ¨óľ¨óľ¨ óľ¨ đĄ óľ¨ (63) óľ¨óľ¨ ó¸ óľ¨óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨đđ ⊠đ 0.5 (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨đđ ⊠đ 0.5 (đđ )óľ¨óľ¨óľ¨ ⊽ . óľ¨óľ¨ óľ¨ óľ¨ ó¸ (đ )óľ¨óľ¨ óľ¨óľ¨đđ ⪠đ 0.5 (đđ )óľ¨óľ¨óľ¨ óľ¨óľ¨óľ¨đđ ⪠đ 0.5 đ óľ¨óľ¨ (64) we can get So, in the condition, we can draw a conclusion that S(Z, ó¸ đ 0.5 (Z)) ⊽ S(Z, đ 0.5 (Z)). (6) [đĽđđĄ ]đ is contained in boundary region of đđ and boundary region of đđ˘ . According to the proofs of (4) and (5), if đ(đđ , đ 0.5 (đđ )) ⊞ |[đĽđ2đĄ ]âŠđđ |/|[đĽđ2đĄ ]âđđ | and đ(đđ˘ , đ 0.5 (đđ˘ )) ⊞ |[đĽđ2đĄ ]âŠđđ˘ |/|[đĽđ2đĄ ]â ó¸ đđ˘ |, we easily have S(Z, đ 0.5 (Z)) ⊽ S(Z, đ 0.5 (Z)). From (1), (2), (3), (4), (5), and (6), Theorem 17 is proved successfully. Theorem 17 shows that, under some conditions, the similarity degree between an interval set Z and its approximation set đ 0.5 (Z) is a monotonically increasing function when the knowledge granules in đ/đ are divided into many finer subgranules in đ/đ ó¸ , where đ/đ ó¸ is a refinement of đ/đ . 6. Conclusion With the development of uncertain artificial intelligence, the interval set theory attracts more and more researchers and gradually develops into a complete theory system. The interval set theory has been successfully applied to many fields, such as machine learning, knowledge acquisition, decisionmaking analysis, expert system, decision support system, inductive inference, conflict resolution, pattern recognition, fuzzy control, and medical diagnostics systems. It is an important tool of granular computing as well as the rough set which is one of the three main tools of granular computing [25, 26]. In the interval set theory, the target concept is approximately described by two certain sets, that is, the upper bound and lower bound. In other words, the essence of this theory is that we deal with the uncertain problems with crisp set theory method. Many researches have been completed on extended models of the interval set, but the theories nearly cannot present better approximation set of the interval set Z. In this paper, the approximation set đ 0.5 (Z) of target concept Z in current knowledge space is proposed from a new viewpoint and related properties are analyzed in detail. In this paper, the interval set is transformed into a fuzzy set at first, and then the uncertain elements in boundary region are classified by cut-set with some threshold. Next, the approximation set đ 0.5 (Z) of the interval set Z is defined and the change rules of S(Z, đ 0.5 (Z)) in different knowledge granularity spaces are analyzed. These researches show that đ 0.5 (Z) is a better approximation set of Z than both đ (Z) and đ (Z). Finally, a kind of crisp approximation set of interval set is proposed in this paper. These researches present a new method to describe uncertain concept from a special viewpoint, and we hope these results can promote the development of both uncertain artificial intelligence and granular computing and extend the interval set model into more application fields. It is an important research issue concerning discovering more knowledge and rules from the uncertain information [27]. The fuzzy set and the rough set have been used widely [28â32]. Recently, the interval set theory is applied to many important fields, such as software testing [33], the case generation based on interval combination [34], and incomplete information table [35â38]. In the future research, we will focus on acquiring the approximation rules from uncertain information systems based on the approximation sets of an interval set. Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper. Acknowledgments This work is supported by the National Natural Science Foundation of China (nos. 61272060, 61309014, and 61379114), The Natural Science Foundation of Chongqing of China (nos. cstc2012jjA40047, cstc2012jjA40032, and cstc2013jcyjA40063), and the Science & Technology Research Program of Chongqing Education Committee of China (no. KJ130534). References [1] D. Li, C. Liu, Y. Du, and X. Han, âArtificial intelligence with uncertainty,â Journal of Software, vol. 15, no. 11, pp. 1583â1594, 2004. [2] L. A. Zadeh, âFuzzy sets,â Information and Control, vol. 8, no. 3, pp. 338â353, 1965. [3] Z. Pawlak, âRough sets,â International Journal of Computer and Information Sciences, vol. 11, no. 5, pp. 341â356, 1982. [4] L. Zhang and B. Zhang, The Theory and Applications of Problem Solving, Tsinghua University Press, Beijing, China, 1990. [5] Y. Yao, âInterval sets and interval-set algebras,â in Proceedings of the 8th IEEE International Conference on Cognitive Informatics (ICCI â09), pp. 307â314, Hong Kong, June 2009. [6] Y. Yao and Q. Liu, âA generalized decision logic in intervalset-valued information tables,â in New Directions in Rough Sets, Data Mining, and Granular-Soft Computing, pp. 285â293, Springer, Berlin, Germany, 1999. [7] G. Wang, J. F. Peters, A. Skowron, and Y. Yao, âRough sets and knowledge technology,â in Proceedings of the 1st International Conference on Rough Sets and Knowledge Technology (RSKT â06), vol. 4062 of Lecture Notes in Artificial Intelligence, Springer, Berlin, Germany, 2006. [8] G. Wang, T. R. Li, B. J. Grzymala, D. Miao, A. Skowron, and Y. Y. Yao, âRough sets and knowledge technology,â in Proceedings of RSKT2008, Springer, Berlin, Germany, 2008, LNAI 5009. [9] G. Y. Wang, Y. Y. Yao, and H. Yu, âA survey on rough set theory and applications,â Chinese Journal of Computers, vol. 32, no. 7, pp. 1229â1246, 2009. 12 [10] Z. Xue, H. Cheng, and H. Huang, âA weak s-implication on interval sets,â Journal of Frontiers of Computer Science and Technology, vol. 7, no. 3, pp. 282â288, 2013. [11] Y. Leung, M. M. Fischer, W. Wu, and J. Mi, âA rough set approach for the discovery of classification rules in intervalvalued information systems,â International Journal of Approximate Reasoning, vol. 47, no. 2, pp. 233â246, 2008. [12] D. Miao, N. Zhang, and X. Yue, âKnowledge reduction in interval-valued information systems,â in Proceedings of the 8th IEEE International Conference on Cognitive Informaticsn (ICCI â09), pp. 320â327, Hong Kong, June 2009. [13] Y. Y. Yao and X. Li, âComparison of rough-set and interval-set models for uncertain reasoning,â Fundamenta Informaticae, vol. 27, no. 2-3, pp. 289â298, 1996. [14] Y. Wang and X. Zhang, âSome implication operators on interval sets and rough sets,â in Proceedings of the 8th IEEE International Conference on Cognitive Informatics (ICCI â09), pp. 328â332, Hong Kong, June 2009. [15] D. Yamaguchi, G. Li, and M. Nagai, âA grey-based rough approximation model for interval data processing,â Information Sciences, vol. 177, no. 21, pp. 4727â4744, 2007. [16] Y. Y. Yao and J. Wang, âInterval based uncertain reasoning using fuzzy and rough sets,â Advances in Machine Intelligence & SoftComputing, vol. 4, pp. 196â215, 1997. [17] Y. Y. Yao, âInterval-set algebra for qualitative knowledge representation,â in Proceedings of the 5th International Conference on Computing and Information (ICCI â93), pp. 370â374, Sudbury, Canada, May 1993. [18] D. Miao, G. Wang, Y. Yao, J. Liang, W. Wu, and Y. Zhang, The Cloud Model and Granular Computing, Science Press, 2012. [19] G. Wang, Rough Set Theory and Knowledge Acquisition, Xiâan Jiaotong University Press, Xiâan, China, 2001. [20] Q. H. Zhang, G. Y. Wang, and Y. Xiao, âApproximation sets of rough sets,â Journal of Software, vol. 23, no. 7, pp. 1745â1759, 2012. [21] F. Hu and G. Wang, âQuick algorithm for certain rule acquisition based on divide and conquer method,â Pattern Recognition and Artificial Intelligence, vol. 23, no. 3, pp. 349â356, 2010. [22] L. Guan, G. Wang, and H. Yu, âIncremental algorithm of Pawlak reduction based on attribute order,â Journal of Southwest Jiaotong University, vol. 46, no. 3, pp. 461â468, 2011. [23] W. X. Zhang and W. Z. Wu, âAn introduction and a survey for the studies of rough set theory,â Fuzzy Systems and Mathematics, vol. 14, no. 4, pp. 1â12, 2000. [24] D. Miao and S. Fan, âCalculation of knowledge granulation and its application,â System Engineering Theory and Practice, vol. 22, no. 1, pp. 48â56, 2002. [25] G. Wang, D. Miao, W. Wu, and J. Liang, âUncertain knowledge representation and processing based on rough set,â Journal of Chongqing University of Posts and Telecommunications, vol. 22, no. 5, pp. 541â544, 2010. [26] D. Miao, D. Li, Y. Yao, and G. Wang, Uncertainty and Granular Computing, Science Press, Beijing, China, 2011. [27] J. Liu, X. Chen, Q. Cai, and Y. Fan, âRecognition structure of uncertainty: a unified framework for representation reasoning and learning,â Journal of Software, vol. 13, no. 4, pp. 649â651, 2002. [28] Y. Shen and F. Wang, âRough approximation of vague sets in fuzzy approximation space,â International Journal of Approximate Reasoning, vol. 52, no. 2, pp. 281â296, 2011. The Scientific World Journal [29] Y. Qian, H. Zhang, Y. Sang, and J. Liang, âMultigranulation decision-theoretic rough sets,â International Journal of Approximate Reasoning, vol. 55, no. 1, part 2, pp. 225â237, 2014. [30] C. Cornelis, J. Medina, and N. Verbiest, âMulti-adjoint fuzzy rough sets: definition, properties and attribute selection,â International Journal of Approximate Reasoning, vol. 55, no. 1, part 4, pp. 412â426, 2014. [31] H. Yang, X. Liao, S. Wang, and J. Wang, âFuzzy probabilistic rough set model on two universes and its applications,â International Journal of Approximate Reasoning, vol. 54, no. 9, pp. 1410â1420, 2013. [32] S. Chen and C. Wang, âFuzzy decision making systems based on interval type-2 fuzzy sets,â Information Sciences, vol. 242, pp. 1â21, 2013. [33] S. Zhang and Z. Shang, âDetection of array bound overflow by interval set based on cppcheck,â Journal of Computer Applications, vol. 33, no. 11, pp. 3257â3261, 2013. [34] J. Yang and H. Zhang, âTest case generation based on interval combination with constraint,â Journal of Wuhan University (Natural Science Edition), vol. 59, no. 5, pp. 458â464, 2013. [35] H. Li, M. Wang, X. Zhou, and J. Zhao, âAn interval set model for learning rules from incomplete information table,â International Journal of Approximate Reasoning, vol. 53, no. 1, pp. 24â 37, 2012. [36] X. Zhang and X. Jia, âLattice-valued interval sets and t-representable interval set t-norms,â in Proceedings of the 8th IEEE International Conference on Cognitive Informatics (ICCI â09), pp. 333â337, Hong Kong, June 2009. [37] B. Sun, Z. Gong, and D. Chen, âFuzzy rough set theory for the interval-valued fuzzy information systems,â Information Sciences, vol. 178, no. 13, pp. 2794â2815, 2008. [38] J. Yao, Y. Yao, V. Kreinovich et al., âTowards more adequate representation of uncertainty: from intervals to set intervals, with the possible addition of probabilities and certainty degrees,â in Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ â08), pp. 983â990, Hong Kong, June 2008. Journal of Advances in Industrial Engineering Multimedia Hindawi Publishing Corporation http://www.hindawi.com The Scientific World Journal Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Applied Computational Intelligence and Soft Computing International Journal of Distributed Sensor Networks Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Advances in Fuzzy Systems Modelling & Simulation in Engineering Hindawi Publishing Corporation http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Volume 2014 Submit your manuscripts at http://www.hindawi.com Journal of Computer Networks and Communications AdvancesâinâArtificial Intelligence Hindawi Publishing Corporation http://www.hindawi.com HindawiâPublishingâCorporation http://www.hindawi.com Volume 2014 International Journal of Biomedical Imaging Volumeâ2014 Advances in Artificial Neural Systems International Journal of Computer Engineering Computer Games Technology Hindawi Publishing Corporation http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Advances in Volume 2014 Advances in Software Engineering Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 International Journal of Reconfigurable Computing Robotics Hindawi Publishing Corporation http://www.hindawi.com Computational Intelligence and Neuroscience Advances in Human-Computer Interaction Journal of Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Journal of Electrical and Computer Engineering Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014
© Copyright 2026 Paperzz