CHAPTER 1
Matrix Algebra ( Linear Algebra )
A matrix is a collection of elements arranged in an array of rows and
columns.
2 1 3
1 2 4
Ex: A
Amn [aij ]
i 1,2, . . m
. , , j 1,2,..., m
, a23 4
Ex: a12 1
a11
a
12
. column vector
.
a
n1
An1
Amn
1 0
B
0 1
,
a11 a12
a
a 22
21
.
.
.
.
a
n1 a n 2
A1n [a11 , a12 ,..., a1n ] row vector
... a1n
... a 2 n
... . square matrix
... .
... a nn
Matrix Operations:
1.Addation:adding elements in corresponding
position.(element-by-element)
1 2 3
Ex: A23
2 0 4
,
2 4 5
B23
1 1 7
1 2 2 4 3 5 3 6 8
A B
2 1 0 1 4 7 3 1 11
2.Subtraction:(element-by-element)
1 2 2 4 3 5 1 2 2
2 1 0 1 4 7 1 1 3
1 2
1 1 2
, M 23
0 4
4 5 6
Ex: A B
Ex: M 22
1
Note: Only matrices of the same size can be added or subtracted.
3.Multiplication:
1 2 3 3 6 9
2 0 4 6 0 12
Ex: 3 A 3
Ex: M 23
Multiply each a ij by 3
3 5
1 1 2
, N 32 0 1
2
0
3
2 4
1 3 1 0 2 2 1 5 1 1 2 4 7 14
P22 M N
2 3 0 0 3 2 2 5 0 1 3 4 12 22
註: Pqt M qr N rt
1 0 1
1 4
4 1
Ex: A 2 3 , B 2 1 1 , C
5 2
1 0 3
1 0
A B Can’t do it !
1 4 4 5 1 1 4 2 24 9
A C 2 4 3 5 2 1 3 2 23 8
1 4 0 5 1 1 0 2 4 1
Note:乘法性質
1 0
2 1
, B
2 1
3 4
Ex: A
1 2 0 3 1 1 0 4 2 1
A B
2 2 1 3 2 1 1 4 7 6
2 1 1 2 2 0 1 1 4 1
B A
3 1 4 2 3 0 4 1 11 4
A B B A (也有相等的時候)
2
1 0
1 0
1 0
, B
→ A B
B A (a b b a )
2 1
0 1
2 1
ex: A
2. AB AC
B C (ab ac b c) ( a 0 )
1 1
1 1
1 0
, B
, C
1 1
0 0
0 1
Ex: A
1 1
1 1
AB
AC
1 1
1 1
but B C
3. A( BC ) ( AB)C
Identity Matrix:單位矩陣 ( always square )
I×A=A×I=A
I 22
1 0
0 1
I 33
1 0 0
0 1 0
0 0 1
( 1 on diagonal and 0 elsewhere )
Ex:
2 5 8
A 3 6 9
4 7 10
A I 33
2 5 8
3 6 9
4 7 10
1 0 0 2 5 8
0 1 0 3 6 9 I A
0 0 1 4 7 10
1 0 0
2 1 3
2 1 3
0
1
0
Ex: B I 33
4 6 5 0 0 1 4 6 5
3
4. Transposition:
Ex: A23
1 3
1 2 1
列 行 A' 32 2 0
3 0 4
1 4
Ex: B24
1
3
1 3 4 5
B
'
42
4
2 4 2 7
5
Note:1. ( A B)' A' B'
2
4
2
7
2. ( AB)' A' B'
3. ( AB)' B' A'
4. ( A' )' A
5. Matrix Partitioning:
Ex: A44
B43
a11 a12
a
a 22
21
a 31 a32
a 41 a 42
b11 b12
b
b
21 22
b31 b32
b41 b42
a14
a 24 A11
a 34 A21
a 44
a13
a 23
a33
a 43
b13
b23 B11
b33 B21
b43
A12
A22
B12
B22
Then,
A
A B 11
A21
A12 B11
A22 B21
B12 A11 B11 A12 B21
B22 A21 B11 A22 B21
A11 B12 A12 B22
A21 B12 A212 B22
Diagonal Matrices:
1.Always square ( m=n )
2.with one or more nonzero elements on the main diagonal ([\])
and zeroes elsewhere.
2 0
Ex:
0 0 22
,
1 0 0
0 2 0
0 0 5 33
4
1 2 3
If M 4 5 6 ,
7 8 9
If M Mˆ M ,
1 0 0
then M̂ 0 5 0
0 0 9
0 2 3
then M 4 0 6
7 8 0
Ex:
3 0 0
1 2 3
3 10 3 1 2 3
4 1 2 0 5 0 12 5 4 4 3 1 5 2 2
0 0 2
2 0 1 2 3 2 4 6
2 1 2 3
0 3 4 1 2 12 3 6
3 4 1 2
Ex:
Vectors:
1.Summation Vectors:
1
1
e
:
1
or
1
1
1
:
1
1
1 2 3 1 2 3 6
Ex:
1
4 5 6 1 4 5 6 15
1 1
1 2 3
1 4 2 5 3 6 5 7 9
4 5 6
2.Inner Product:
u v u v uv
5
1
4
Ex: u 2 , v 2
3
1
5
u v 3 2 1 1 15 2 4 21
4
3.Outer Product:
u v uv
1
4
Ex: u 2 , v 2
3
1
1
4 2 1
u v u v 2 4 2 1 8 4 2
3
12 6 3
Linear Equation Systems
Linear -Contain only variables to its first power
- 2 x 5 , 3x1 2 x2 1
-No x 2 , x 3 , e x , ln t, sin x
-No ( x1 x2 x3 )!
2 x 5 0 point
2 x1 3x2 7 0 line
3x1 x2 x3 5 0 plane
Ex:Job Retraining Programs
Total budget = $1,000,000
Program1:$2500/人 expect to earn $10000/yr
Program2:$3500/人 expect to earn $20000/yr
6
Target tax revenue = $115000/yr (from program1 and program2)
Tax rate = 2.5%
5x 7 x2 2000
Ans: 2500x1 3500x2 1000000
1
Ax B
(1 0 0 0x0
1 1 5 0 0 0
2 2 0 0 0x0
2 ) 0.0 2 5
x1 2 x2 460
x
5 7
2000
, X 1 , B
A
460
1 2
x2
Inverse:反矩陣
If AA1 A1 A I , then A1 is the inverse of A .
1
1
2 x 6 (2 x) 2 1 (2 x) 1 x (6) 3
2
2
1
1
Ax B A ( Ax) Ix x A B
(1) Existence?
3 31
1
3
,
5 51
1
5
,
1
0 (x)
0
Some matrices may not have inverses , we call such matrices singular,
otherwise , nonsingular (inverse exists!)
(2) Uniqueness?
Proof:Suppose B and C are inverses of A
AC BA I
B ( AC ) ( BA )C
B I I C
BC
How to fine the inverse A 1 ?
5 7
A 1 ?
1 2
Ex: A
A A1 I
7
s
t
5 7 s t 1 0
1 2 u v 0 1
Let A 1
u v
5s 7u 1
1
2
u
, s
3
3
s 2u 0
5s 7v 0
5
v
3
t 2v 1
a
, t
2
A 1 3
1
3
7
3
7
3
5
3
a
In general , A 11 12 A 1 ?
a 21 a 22
s
t
Let A 1
u v
a
A A1 I 11
a21
a12
a22
s t 1 0
u v 0 1
a s a12u 1 ( a22 )
11
a21 s a22u 0 ( a12 )
a t a12 v 0 ( a22 )
11
a21t a22 v 1 ( a12 )
( a a a21a12 ) s a22
a22
11 22
s
a11a22 a21a12
( a11a22 a21a12 ) t a12
t
u
a 21
a11a 22 a 21a12
A1
,
1
a11a22 a21a12
v
a12
a11a22 a21a12
a11
a11a 22 a 21a12
a22 a12
a
21 a11
1 3
2 4
Ex: A
8
A 1
2
4
3
1
4 6 2 1
1
1 3
A
,
2 4
2
1 3
2 4 1
3
2 1 0
1 0 1
2
A 4 6 2
a12
a
A 11
a21 a22
Note: A1
3
2
1
2
,
A a11a22 a21a12
1
Some matrix
A
How to fine the determinant
2 6
A
4
9
A ?
A 2 9 4 6 6
1 4 2
A 2 0 3
3 5 7
A 1 0 7 2 5 2 3 3 4 - 2 0 3 - 3 5 1 - 7 2 4 -15
Def:
1. Minor of an element a ij = m ij = the determinant of the matrix
remaining when row i and column j are removed.
1 3
Ex: A
m11 4 4
2 4
1 4 3
A 2 5 1 m 23 6 12 6
3 6 6
9
1 4
A
m 22 1 1
3
6
Def 2:Cofactor of an element a ij = A ij (1) i j mij
1 3
A 12 (1)
2 4
Ex: A
1 2
4 2 3
A 0 5 2 A 31 (1)
1 4 1
Note:For any n n matrix
2 2
31
( m12 2 )
(11) 11
( m31 2 2 3 5 )
A
n
(1)
A a ij A ij :for any row i
j1
n
(2)
A a ij A ij :for any column j
i 1
1 3
A 4 6 2
2 4
Ex: A
Row 1:1 A 11 3 A 12 (1) 11 4 3 (1) 12 2 4 6 2
Column 2:3 A 12 4 A 22 6 4 (1)
2 2
1 6 4
1 4 2
Ex: A 2 1 5 3 A 31 3 A 33 3 18 3 (7) 33 (Row 3)
3 0 3
Def 3:The adjoint of a matrix A = adj A A ij
10
( Cofactors of A )
1 3
1 2
4 3
A
adj A
2 4
3 4
2 1
Ex: A
1 4 2
Ex: A 2 0 1
3 5 6
5 14 4
adj A 9 0 3
10
7 8
1
adj A
A
Note: A1
A :
Properties of
1.
1 2 3
A 4 0 5
2 1 6
A A
1 3
A 4 6 2
2
4
Ex: A
1 2
A
A 4 6 2
3 4
2. If any row or column of A contains all zeroes, than
A 0.
1 0 5
Ex: A 2 0 9 0
3 0 18
3. If B is obtained by multiplying some row or column of A by a
constant C, than |B|=C |A|.
4. If any 2 rows or columns of A are interchanged, than |A| changes sign.
1 3
2 4
B
,
1 3
2 4
Ex: A
A 4 6 2 ,
B 642
11
5. If two or more rows or columns in A are equal, than | A |=0.
Ex: A
1 1
3 3
1 1
0
,
4
B 2 2 9 0
3 3 100
6. If 2 rows or columns in A are proportional, then | A |=0.
2 3
Ex: A
0
4 6
1
A 9
2
4
0
8
5
9 0
1 7
7. Evaluation of the determinant by alien cofactors always yields a
value of zero.
n
a i j A i j 0
j1
n
a A 0
ij
ij
i 1
n
a ij A ij
j1
A
n
a A
ij
ij
i 1
1 1 1
Ex: A 2 0 6
3 7 1
f o r a n y i i
f o r a n y j j
for any i
for any j
A 2 ( 1 ) ( 6 ) 0 6 ( 1 ) ( 4) 1 2
Note: adj A A ij
1 5
1 6
6 5 A11
A
adj
A
,
5 3
3 1 A
3
6
12
Ex: A
12
A 21
A 22
Theorem: A1
adj A
A
a11
a
proof: A adj A 21
:
a n1
n
a1i A1j
j1
n
a 2i A1j
j1
:
n
a ni A1j
j1
a12
a 22
:
an2
... a1n A11
... a 2n A 21
: :
... a nn A n1
n
a1i A 2 j
j1
n
a
j1
2i
A2 j
:
n
a
j1
ni
A2 j
A12
A 22
:
An 2
... A1n
... A 2n
:
... A nn
A nj
j1
A
n
... a 2i A nj 0
j1
:
:
0
n
... a ni A nj
j1
n
a
...
1i
0
A
0
A I
So, A adj A A I A
adj A
adj A
I A1
A
A
( AA-1 A-1 A I )
1 3
A1 ?
Ex: A
3 7
7 3
adj A
3 1
7 3 7 3
adj A 3 1 2
2
A1
A
2
3 1
2
2
A 7 9 2
,
Note:1. ( AB)1 B 1 A1 ( A1 B 1 )
13
...
...
0
0
:
A
Is B1 A1 the inverse of AB ?
( M M 1 M 1 M I )
( AB) ( B 1 A1 ) A ( BB 1 ) A1 A A1 I
( B 1 A1 ) ( AB) B 1 ( A1 A) B B B 1 I
1 1
Ex: B
B 0 2 2
2 0
0 1
adj B
2 1
,
,
1 2
B
1 0
0 1
2
B
1 1
2
1
1
3
7 1
1 3 1 4
4
1
AB
( AB)
7
4 17 7 17
17 3
4
4
0 1
2
B A
1 1
2
1
1
3 3
1
7
2 4
4
2
3
7
1 17
2
4
4
2
2. ( A)1 ( A1 )
3
7
1 3
1 3
2
2
1
Ex: A
A
(A )
3
1
3 7
3 7
2
2
3
3
7
7
2
2
2
2
1
1
A
( A )
3
3
1
1
2
2
2
2
Note:1. For any pair of square matrices A and B , |AB|=|A|‧|B|.
2. If matrix B is obtained from A by adding a multiple of one row
of A to another row of A, then
1 3
Ex: A
2 4
,
1 3
B
4 10
14
B A .
A 4 6 2
,
B 10 12 2
Ex:
2 3
2
5
0 5
8
7
1 1
4
2
0 2
4
3
3
2
2
1
0 1 11
4
1
1
3 1
0
(1) 0
1
1
1
5
8
7
(1) 2
4
3
3 1
1 11 4
47 13
18
5
11
4
235 234 1
Gauss-Jordan Method for Computing Inverses
A →
A-1 =?
[ A
I ]
BA BI
A-1A A-1I
[ I
A-1 ]
Def:Elementary Row Operation (e.r.o.) .
Note:Performing Elementary Row Operations to a matrix is equivalent to
pre-multiply the matrix by another matrix.
1 0 1 1 1 1
1 2 1 1 -1 1
=
,
Ex:
1 1 = 1 1
0
3
1
1
3
3
0
1
2 1 1
Ex: 4 6 0
2 7 2
15
1 0 0 1
0 1 0 0
0 0 1 0
2 1 1
4 6 0
2 7 2
1 0
0 1
0 0
3
1
2
8
8
0 0 1
2
2 1 0 0
1 0 1 0
1
1
2
2
3
1
0
16 1 0 0
1
1
0 0 1 0
4
8
1
1 1 0 0 1
3
8
1
4
1
8
3
4
1
2
1
1
2
1
0
1
2
1
4
1
5
3
16
8
3
1
8
4
1
1
e.r.o. :
1. Multiply some row by a constant.
2. Add some multiple of one row to another row.
Using Matrix Partition to find inverses:
1
3
Ex: A
1
6
1
4 4 2
3 1 2
5 7 8
2
A
Suppose A= 11
A 21
AA-1=I
0
A12
A 22
AR I
A
11
A 21
R 12
R 22
A12 R11
A 22 R 21
R12 I 0
R 22 0 I
A11R11 A12 R 21 I
A11R12 A12 R 22 0
A 21R11 A 22 R 21 0
A 21R12 A 22 R 22 I
R
So , A R 11
R 21
-1
R
, then A-1=R= 11
R 21
R12 [A11 A12 A22 1A21 ]1
R 22
A 22 1A 21R11
16
R11A12 A231
A 22 1[I A 21R12 ]
0
1
1
0
4
8
1
1 1
1
2
0
Gramer’s rule:
Ex:5X1+7X2=2000
; X1+2X2=460
2000 7
X1 =
460 2
5 7
5 2000
, X2
1
1 2
460
5 7
1 2
X1
b1 2000
5 7
A
,
X=
,
B=
X
b 460
1 2
2
2
AX=B
A 1AX A 1B IX A 1B
X
1
adj A B
A
X1
A11 A 21
X
2 X 1 A12 A 22
A
Xn
A1n
1
X i
(A1i b1 A 2i b 2
A
Ex:X1=
1
(A1i b1 A 2i b 2
A
Gramer’s rule: X i
A Bi
A
A n1
A n 2
A nn
b1
b2
b n
A ni b n )
A ni b n )
Where ABi is obtained from A by replacing the ith
column of A by B.
a11
a
A 21
a n1
a1i
a 2i
a ni
a1n
a11
a
a 2n
, A Bi = 21
a nn
a n1
a12
b1
a 22
b2
an2
bn
17
a1n
a 2n
A Bi b1A1i b 2 A 2i
a nn
b n A ni
In AX=B, where A is n×n :
If | A |≠0 , then “ unique solution ”.
If | A |=0 , then either no solution or infinite # of solution ( depends
on B ).
Theorem:A -1 exists iff | A |≠0
Note:A -1= 1 adj A
A
, If | A |=0, A -1 does not exist
sin gular.
The Geometry of Vectors:
Def:Given n vectors V1 ,V2 , … ,Vn , each containing m elements, and
given n scalars α1, α2 , … , αn , then
n
V0=α1V1+α2V2+…+αnVn= i Vi is called the Linear Combination
i 1
( L.C ) of { V1,V2,…,Vn}.
1
3
Ex: V1 , V2
2
4
1
3 7
V0 2V1 3V2 2 3
2
4 16
If αi≧0, i=1,2, … ,n , then V0 is called a nonnegative L.C. of
{ V1,V2,…,Vn}.
Ex:V0=2V1+4V2
n
If αi≧0 , i=1,2, … ,n , and i
1,
then V0 is called a Convex
i 1
Combination (C.C.) of { V1,V2,…,Vn }.
18
1
3
2
3
Ex:V0= V1+ V2
a11 x1 a12 x 2 b1
a 21 x1 a 22 x 2 b 2
Ax B
a
A 11
a 21
a12
x
b
, x 1 , B 1
a 22
x 2
b2
V1 1 V2 2
V0
x
A 1 A 2 1 B A 1 x1 A 2 x 2 B ( L.C. of columns of A )
x2
( Ai i th column of A ) 向量 常數
In general , n×n system of equations , Ax=B A1x1 A2 x 2 An x n B
( B is a L.C. of {A1 , A2 , … , An}) .
C1
C
Length of a vector C= 2 .
C n
C
C 1 C C12 C 22
C 2
C C12 C22 C2n
,
n
C
i 1
C1
d1
C1 d1
C
d
C d
2
2
1
and D
, C-D 1
Distance between 2 vectors C
C n
d n
C n d n
C D (C1 d1 ) 2 (C2 d 2 ) 2 (C n d n ) 2
n
(C
i
di )2
i 1
C+D
C
C
C-D
C-D
D
D
19
2
i
Angle between 2 vectors C and D:
C D C D cos
C
D
cos
θ
1
- 1
, D , cos
2
1
Ex: C
(1)(-1) (-2)(1)
(1) (2) ( 1) (1)
2
2
2
2
CD
C D
1
10
Area enclosed by 2 vectors:
C
d
C 1 , D 1
C 2
d 2
C
D
2
7
C1
d1
C2
d2
C1d1 C 2 d 2
7 2
Ex: C , D , Area
38
2 6
6
2
Area = | C D|. (Why?)
(2.6,1.5)
1 0
, basis (基底) :
0 1
20
2 6
1
0
1 5 2.6 0 1.5 1 (natural basis)
-2
1
0
3 (2) 0 3 1
1 3
Ex: basis?
2 4
-2
1
3
3 1 2 1 4
-2=α1+3α2
3=2α1+4α2
α1=
17
2
, α2=
7
2
=> NO!
1 3
Ex: , basis?
2 6
2
1
3
3 1 2 2 6
Note:
1.The set of Vectors must be non-parallel in order to be a basis.
2. The set of Vectors must be Linearly independent in order to be a basis.
3.The set of Vectors must span the whole vector space in order to be a
basis.
21
Linear Independence and Linear Dependence
Def:The vectors V1 ,V2 , … ,Vn in m-dimensional space are linearly
dependent ( L.D.) if there are n scalars α1, α2 , … , αn , Not all zero ,
such that α1V1+α2V2+…+αnVn=0. If the only set of αi’s such
that α1V1+α2V2+…+αnVn=0 holds is α1=α2= … =αn=0,
then V1,V2 , … ,Vn are Linearly Independence( L.I. ).
1
3
Ex: V1 , V2
2
4
3 2 0
1
3 0
1 2 1
2
4 0
21 4 2 0
1 2 0
V1 , V2 are L.I.
1
-2
Ex: V1 , V2
2
-4
2 2 0
1
2 0
1 2 1
2
4 0
21 4 2 0
choose 1 2 , 2 1
1 6 , 2 3
V1 , V2 are L.D.
Theorem:Let V be an n-dimensional space and let S={X1,X2,…Xn} be a
set of vectors in V.
Then:(1) if S is L.I. , then S is a basis for V.(∵|S|=n)
(2) if S spans V,….., S is L.I.
22
Theorem:If S={X1,X2,…Xn} is a basis for V , then any vector in V can be
represented as
one and only one L.C. of X1,X2,…Xn.
Def:The rank of a Matrix A , R(A) or ρ(A) is the max. number of L.I.
columns or rows in A .
1 2 3
Ex: A
R(A) 2
2 1 1
1 2 3
Ex: B
R(B) 1 (
2 4 6
不能成為倍數)
1 2 2
Ex: C
R(C) 2
2 7 4
1 2 3
Ex: A 2 5 6 R(A) 2
2 4 6
Note:(1) R(A)=R(A’)
(2) If A is m×n , then ρ(A)≦min(m,n)
Quadratic Forms:
-important in minimization and maximization
2-Var 二次式:
X1
X2
Let X=
Q(X1,X2)=6 X12 +4X1X2+3 X 22
X1
6 2
, A=
2 3
Q(X , X ) X 'AX
1 2
a12
a
A= 11
(a12 =a 21 ) Symmetric
a 21 a 22
6 2 X1
X2
2 3 X 2
3-Var 三次式:
23
Q(X1,X2,X3)=3 X12 -4 X 22 +5 X 32 +2X1X2-6X1X3+8X2X3
X1
3 1 3
X X 2 , A= 1 -4 4
X 3
3 4 5
Q(X1 , X 2 , X 3 ) X'AX
Q(X1,X2)≧0 for all X1,X2 ?
.……… ≦ ………………
Ex:2 X12 +3 X 22 ≧0
Q(X1,X2) = a11 X12 +2a12X1X2+a22 X 2 2
= a11 X12 +2a12X1X2+
a12 2 2
a 2
X 2 a 22 X 2 2 12 X 2 2
a11
a11
a12
a12
a11a 22 a12 2
2
X1X 2 ( X 2 ) ]+[
= a11[ X +2
] X22
a11
a11
a11
2
1
a1 1a 2-a2
The sign of Q(X1 ,X 2) depends on the signs of a 1 and
1
a11
2
1 2
.
Note:
(1) Let A=[A1,A2,…,An] , then , |A|≠0 if and only of A1,A2,…,An are L.I.
(2) If A n is a Linear Combination of A 1,A 2,…,A n-1, then A 1,A 2,…,A n-1, A n
are L.D.
An is a L.C. of A 1,A 2,…,A n-1
A n 1A1 2 A 2
1A1 2 A 2
A1 ,A 2 ,
n 1A n 1
n 1A n 1 A n 0
,A n-1 ,A n are L.D.
24
(3) The max. number of L.I. Vectors in m-dimensional space is m .
1 3
Ex: L.I
2 4
1
1 3 - 6
2 4 7 N o t L . I.
3
4
;
5
1
2
1
6
- 1
7
1
6
Not L.I.
Def:A set of vectors S={X1,X2,…Xn} in a Vector Space V is called a basis
if (1) S spans V and (2) S is L.I.
1
0
0
1
0
1
2
0
, X2 =
, X3
, X4 =
Ex: S X1
0
1
-1
2
0
2
1
1
The show (2): 1X1 2 X 2 3 X3 4 X 4 0
1
0
0
1 0
0
1
2
0 0
1
2
3
4 0
1
1
2
1 0
0
2
1
0 0
4
1
2 2 3
1 2 2 3
2 2 3 4
0
0
=0
0
1 2 3 4 0
The show (1):
25
S is L.I.
a
1
0
0
1
b
0
1
2
0
Let X 0
1
2
3
4
c
1
1
2
0
d
0
2
1
1
Definitions:
1.If Q is always positive (Q>0) for all values of Xi’s (except when all Xi’s are
zero) , then Q is positive definite (PD).
2……………….negative(Q<0)………………………………………………
……….. negative definite (ND).
3……………… nonnegative (Q≧0)………………………………………...
……. positive semi-definite (PSD).
4.……………….nonpositive (Q≦0)………………………………………...
…….. negative semi-definite (NSD).
Def:Leading Principal Minors of a matrix A.
The kth order leading principal minor of a matrix is the determinant of the
matrix made up of the first k rows and columns.
a11 a12
Ex: A a 21 a 22
a 31 a 32
a13
a 23 , n=3
a 33
a11 a12
A3 a 21 a 22
a 31 a 32
A1 a11 a11
A2
a11 a12
a11a 22 a 21a12
a 21 a 22
26
a13
a 23 = A
a 33
A1 a1 1 1
1 2 4
Ex: 2 1 0
0 3 3
A2
1 2
1 4 5
2 1
1 2
A3 2 1
0 3
4
0
3
Def:Principal Minors of a matrix A.
A principal minor of a matrix is the determinant of the matrix remained
after a particular set of rows and the corresponding columns are removed.
A kth-order principal minor of A is the determinant of the matrix remaining
when all but k rows and corresponding columns are removed.
a11
Ex: a 21
a 31
a12
a 22
a 32
a13
a 23
a 33
a1 1
a
21
a 3 1
a 1 2 a 1 3
a 2 2 a 2 3
a 3 2 a 3 3
(1,2) |A1(1)|=|a33|=a33
(1,3) |A1(2)|=|a22|=a22
(2,3) |A1(3)|=|a11|=a11
a
(3) |A2(3)|= 11
a 21
a12
a 22
a11
|A3|= a 21
a 31
a
(1) |A2(1)|= 22
a 32
a 23
a 33
a
(2) |A2(2)|= 11
a 31
a13
a 33
a12
a 22
a 32
a13
a 23 =|A|
a 33
Note:LPM PM
Theorem:
1.A quadratic form, X’AX , is
(a) PD if and only if all LPMs of A are positive ( |A1|>0 , |A2|>0 , …. ,
|An|>0 ).
(b) ND if and only if the LPMs of A alternate in sign beginning negative.
( |A1|<0 , |A2|>0 , |A3|<0,…..)
27
A
2.A quadratic form, X’AX, is
(a) PSD if and only if all PMs of A are nonnegative.
( all |A1|≧0 , all |A2|≧0 , … , all |An|≧0 )
(b) NSD if and only if all odd-order PMs of A are nonpositive.
( all |A1|≦0 , all |A3|≦0 , all |A5|≦0 , …………)
and all even-order PMs of A are nonnegative.
( all |A2|≧0 , all |A4|≧0 , all |A6|≧0 , …………)
Ex:
Ex: 2X12 6X1X2 5X22
2X12 4X1X 2 6X1X 3 8X 2 X 3 X 2 2 4X 32
X1
X ' AX , X
X 2
2 3 X 1
[ X 1 X 2 ]
3 5 X 2
X1
X2
2 2 3 X1
X 3 2 1 4 X 2
3 4 4 X 3
Ex1:X12+6X22
X1
1 0 X1
X2
0 6 X 2
A1 1 0
A2
1 0
0 6
60
all LPM>0
PD
Ex2:-X12-6X22
X1
1 0 X1
X2
0 6 X 2
A1 | 1| 1 0
A2
1
0
0
6
60
, ,.....
ND
Note:If Q(X1,X2) is PD , then –Q(X1,X2) is ND.
Ex3:X12-4X1X2+4X22+X32
PSD
28
PD
NSD
ND
X1
1 2 0 X1
X3 2 4 0 X 2
0 0 1 X 2
X2
A1 1
1 2
0
2 4
A2
Neither PD nor ND.
A1 (1) 1 , A1 (2) 4 , A1 (3) 1 all 0
4 0
A 2 (1)
4 , A 2 (2)
0 1
1 0
1 , A 2 (3)
0 1
1
2
2
4
0
all 0
2 0
1
A 3 2
0
4
0
0 =0
1
all 0 PSD
Ex4:-X12+4X1X2-4X22-X32
1 2 0 X1
X1 X 2 X3 2 4 0 X 2
0 0 1 X 2
A1 1
A2 0
Neither PD nor ND.
A1 (1) 1 , A1 (2) 4 , A1 (3) 1 all 0
A 2 (1)
A3
1
2
2
4
0 , A 2 (2)
1
2
0
2
4
0
0
0
1
=0
1
0
0
1
1 , A 2 (3)
4
0
0
1
all 0 NSD
Ex:X12-6X22
X1
1 0 X1
X2
0 6 X 2
A1 1
A2
1 0
6
0 6
A1 (1) 1 , A1 (2) 6
Neither PD nor ND
Neither PSD nor NSD
indefinite
29
4
all 0
© Copyright 2026 Paperzz