Open problems about sumsets in finite abelian groups

Open problems about sumsets
in finite abelian groups
Béla Bajnok
January 5, 2016
Béla Bajnok
Open problems about sumsets
Three types of sumsets
G : finite abelian group written additively, |G | = n
A = {a1 , . . . , am } ⊆ G , |A| = m
h∈N
h-fold sumset of A:
m
m
hA = {Σm
i=1 λi ai : (λ1 , . . . , λm ) ∈ N0 , Σi=1 λi = h}
h-fold restricted sumset of A:
m
m
hˆA = {Σm
i=1 λi ai : (λ1 , . . . , λm ) ∈ {0, 1} , Σi=1 λi = h}
h-fold signed sumset of A:
m
m
h± A = {Σm
i=1 λi ai : (λ1 , . . . , λm ) ∈ Z , Σi=1 |λi | = h}
hˆA ⊆ hA ⊆ h± A
Rarely equal
Béla Bajnok
Open problems about sumsets
Three functions
ρ(G , m, h) = min{|hA| : A ⊆ G , |A| = m}
ρˆ(G , m, h) = min{|hˆA| : A ⊆ G , |A| = m}
ρ± (G , m, h) = min{|h± A| : A ⊆ G , |A| = m}
ρ(G , m, h) known; ρˆ(G , m, h) and ρ± (G , m, h) not fully known
ρˆ(G , m, 1) = ρ(G , m, 1) = ρ± (G , m, 1) = m
ρˆ(G , m, h) ≤ ρ(G , m, h) ≤ ρ± (G , m, h)
Often equal
ρˆ(Z23 , 4, 2) = 5, ρ(Z23 , 4, 2) = 7, ρ± (Z23 , 4, 2) = 8
Béla Bajnok
Open problems about sumsets
ρ(G , m, h)
ρ(G , m, h) = min{|hA| : A ⊆ G , |A| = m}
Cauchy, 1813; . . . ; Plagne, 2006
⇓
ρ(G , m, h) is known for all G , m, h
How to make hA small?
G = Zn
Put A in a coset:
A ⊆ a + H ⇒ hA ⊆ h · a + H
Put A in an AP (arithmetic progression):
hk−h
A ⊆ ∪k−1
i=0 {a + i · g } ⇒ hA ⊆ ∪i=0 {a + i · g }
Béla Bajnok
Open problems about sumsets
ρ(G , m, h)
Put A in an AP of cosets:
Choose d ∈ D(n)
H ≤ Zn with |H| = d so H = ∪d−1
j=0 {j · n/d}
Use dm/de cosets of H
m = cd + k with 1 ≤ k ≤ d
Ad = Ad (n, m) = ∪c−1
i=0 (i + H)
S
∪k−1
j=0 {c + j · n/d}
⇓
hAd =
∪hc−1
i=0 (i
+ H)
S
∪hk−h
j=0 {hc
+ j · n/d}
⇓
|hAd | = min{n, hcd + min{d, hk − h + 1}}
Béla Bajnok
Open problems about sumsets
ρ(G , m, h)
fd = fd (m, h) = hcd + d = (hdm/de − h + 1) · d
|hAd | = min{n, hcd + min{d, hk − h + 1}}
= min{n, fd , hm − h + 1}
= min{fn , fd , f1 }
u(n, m, h) = min{fd (m, h) : d ∈ D(n)}
Theorem (Plagne)
For all G , m, and h
ρ(G , m, h) = u(n, m, h)
Proof:
≤: construction as above but in any G
≥: generalized Kneser’s Theorem
u(n, m, h) ∼ Hopf–Stiefel function
Béla Bajnok
Open problems about sumsets
ρ(G , m, h)—Inverse Problems
|A| = m, |hA| = ρ(G , m, h) ⇒ A =?
Examples:
ρ(Z15 , 6, 2) = 9
⇓
A = (a1 + H) ∪ (a2 + H) with |H| = 3
ρ(Z15 , 7, 2) = 13
⇓
A = (a1 + H) ∪ (a2 + H) ∪ {a3 } with |H| = 3 or
A = (a1 + H) ∪ {a2 , a3 } with |H| = 5 or
A = ∪6i=0 {a + i · g }
Béla Bajnok
Open problems about sumsets
ρ(G , m, h)—Inverse Problems
Special Case
p = min{p prime : p|n} and m ≤ p
⇓
ρ(G , m, h) = min{p, hm − h + 1}
Theorem (Kemperman)
hm − h + 1 < p and |hA| = ρ(G , m, h) = hm − h + 1
⇓
h = 1 (and A arbitrary), or
A = AP
Conjecture
m ≤ p < hm − h + 1 and |hA| = ρ(G , m, h) = p
⇓
A ⊆ a + H with |H| = p
Béla Bajnok
Open problems about sumsets
ρˆ(Zn , m, h)
ρˆ(G , m, h) = min{|hˆA| : A ⊆ G , |A| = m}
How to make hˆA small? G = Zn
H ≤ G with |H| = d so H = ∪d−1
j=0 {j · n/d}
m = cd + k with 1 ≤ k ≤ d
[
c−1
Ad = Ad (n, m) = ∪i=0
(i + H) ∪k−1
j=0 {c + j · n/d}
|hAd | = min{n, fd , hm − h + 1}
fd = fd (m, h) = hcd + d = (hdm/de − h + 1) · d

if h ≤ min{k, d − 1}
 min{n, fd , hm − h2 + 1}
|hˆAd | =

min{n, hm − h2 + 1 − δd } otherwise
δd = δd (m, h) is an explicitly computed “correction term”
Béla Bajnok
Open problems about sumsets
ρˆ(Zn , m, h)
uˆ(n, m, h) = min{|hˆAd | : d ∈ D(n)}
ρˆ(Zn , m, h) ≤ uˆ(n, m, h)
|hˆA1 | = |hˆAn | = min{n, hm − h2 + 1}
ρˆ(Zn , m, h) ≤ min{n, hm − h2 + 1}
Theorem (Dias da Silva, Hamidoune; Alon, Nathanson, Ruzsa)
p prime ⇒ ρˆ(Zp , m, h) = min{p, hm − h2 + 1}
For n ≤ 40, m, h:
ρˆ(Zn , m, h) =


uˆ(n, m, h)

uˆ(n, m, h) − 1
Béla Bajnok
more than 99.9% of time
otherwise
Open problems about sumsets
ρˆ(Zn , m, h)
m = k1 + (c − 1)d + k2 with 1 ≤ k1 , k2 ≤ d, k1 + k2 > d
[
[ k −1
1 −1
2
Bd = ∪kj=0
{j ·n/d} ∪c−1
(i
·g
+H)
∪j=0
{c ·g +(j0 +j)·n/d}
i=1
Bd is still in dm/de cosets of H but with ≤ 2 cosets not fully in Bd
|hˆBd | < |hˆAd | ⇔ n, m, h are very special
wˆ(n, m, h) = min{|hˆBd | : d ∈ D(n)}
ρˆ(Zn , m, h) ≤ min{uˆ(n, m, h), wˆ(n, m, h)}
Problem
ρˆ(Zn , m, h) = min{uˆ(n, m, h), wˆ(n, m, h)} ?
True for all n, m, h with n ≤ 40
Béla Bajnok
Open problems about sumsets
ρˆ(Zn , m, 2)
For h = 2 this becomes:
Conjecture
ρˆ(Zn , m, 2) =
8
min{ρ(Zn , m, 2), 2m − 4}
>
>
<
if 2|n and 2|m, or
(2m − 2)|n and log2 (m − 1) 6∈ N;
>
>
:
otherwise.
min{ρ(Zn , m, 2), 2m − 3}
Conjecture (Lev)
ρˆ(G , m, 2) ≥ min{ρ(G , m, 2), 2m − 3 − |Ord(G , 2)|}
Theorem (Eliahou, Kervaire)
p odd prime ⇒ ρˆ(Zrp , m, 2) ≥ min{ρ(Zrp , m, 2), 2m − 3}
Theorem (Plagne)
ρˆ(G , m, 2) ≤ min{ρ(G , m, 2), 2m − 2}
Béla Bajnok
Open problems about sumsets
ρˆ(G , m, h)
Recall:
Special Case
p = min{p prime : p|n} and m ≤ p
⇓
ρ(G , m, h) = min{p, hm − h + 1}
Conjecture
p = min{p prime : p|n} and m ≤ p
⇓
ρˆ(G , m, h) = min{p, hm − h2 + 1}
Theorem (Károlyi)
Conjecture true for h = 2.
Béla Bajnok
Open problems about sumsets
ρˆ(G , m, h)—Inverse Problems
Theorem (Kemperman)
hm − h + 1 < p and |hA| = ρ(G , m, h) = hm − h + 1
⇓
h = 1 (and A arbitrary), or
A = AP
Conjecture
hm − h2 + 1 < p and |hA| = ρˆ(G , m, h) = hm − h2 + 1
⇓
h ∈ {1, m − 1} (and A arbitrary),
h = 2, m = 4, and A = {a, a + g1 , a + g2 , a + g1 + g2 }, or
A = AP
Theorem (Károlyi)
Conjecture true for h = 2.
Béla Bajnok
Open problems about sumsets
ρˆ(G , m, h)—Inverse Problems
Conjecture
m ≤ p < hm − h + 1 and |hA| = ρ(G , m, h) = p
⇓
A ⊆ a + H with |H| = p
Conjecture
m ≤ p < hm − h2 + 1 and |hA| = ρˆ(G , m, h) = p
⇓
A ⊆ a + H with |H| = p
Béla Bajnok
Open problems about sumsets
ρ± (G , m, h)
ρ± (G , m, h) = min{|h± A| : A ⊆ G , |A| = m}
All work with Matzke, 2014-2015
Surprises:
ρ± (G , m, h) depends on structure of G not just |G | = n
E.g. ρ± (Z23 , 4, 2) = 8, ρ± (Z9 , 4, 2) = 7
Usually |h± A| > |hA|, but often ρ± (G , m, h) = ρ(G , m, h)
E.g. n ≤ 24 ⇒ ρ± (G , m, h) = ρ(G , m, h) except ρ± (Z23 , 4, 2)
Symmetric A (i.e. A = −A) is not always best
Sometimes
near-symmetric A (i.e. A \ {a} is symmetric) or
asymmetric A (i.e. A ∩ −A = ∅)
is best
But one of these three types will always yield ρ± (G , m, h)
Béla Bajnok
Open problems about sumsets
ρ± (G , m, h)
Theorem
For cyclic G ,
ρ± (G , m, h) = ρ(G , m, h).
Proof: For each d ∈ D(n), find R ⊆ G so that
R is symmetric,
|R| ≥ m,
|h± R| = |hR| ≤ fd (m, h).
(A symmetric set A with |A| = m and |hA| ≤ fd (m, h) may not
exist.)
Béla Bajnok
Open problems about sumsets
ρ± (G , m, h)
Theorem
For G of type (n1 , . . . , nr ),
ρ± (G , m, h) ≤ u± (G , m, h),
where
u± (G , m, h) = min {Πρ± (Zni , mi , h) : mi ≤ ni , Πmi ≥ m}
= min {Πu(ni , mi , h) : mi ≤ ni , Πmi ≥ m}
= min{fd (m, h) : d ∈ D(G , m)}
with
D(G , m) = {d ∈ D(n) : d = Πdi , di ∈ D(ni ), dnr ≥ dr m}
Note: for cyclic G , D(G , m) = D(n).
Béla Bajnok
Open problems about sumsets
ρ± (G , m, h)
Corollary
u(n, m, h) ≤ ρ± (G , m, h) ≤ u± (G , m, h),
where
u(n, m, h) = min{fd (m, h) : d ∈ D(n)}
u± (G , m, h) = min{fd (m, h) : d ∈ D(G , m)}
Corollary
G is a 2-group ⇒ ρ± (G , m, h) = ρ(G , m, h)
Corollary
G is such that 6 ∃H ≤ G , H ∼
= Zrp , p > 2, r ≥ 2
⇓
ρ± (G , m, h) = ρ(G , m, h)
Béla Bajnok
Open problems about sumsets
ρ± (G , m, h)
Can we have ρ± (G , m, h) < u± (G , m, h)?
Proposition
d ∈ D(n) odd, d ≥ 2m + 1 ⇒ ρ± (G , m, 2) ≤ d − 1.
Proof:
∃H ≤ G , |H| = d,
∃A ⊆ H, |A| = m, A ∩ (−A) = ∅
0 6∈ 2± A.
Conjecture
Do (n) = {d ∈ D(n) : d odd, d ≥ 2m + 1}.
ρ± (G , m, h) = u± (G , m, h) for all h ≥ 3.
u± (G , m, 2)
if Do (n) = ∅,
ρ± (G , m, 2) =
min{u± (G , m, 2), dm − 1} if dm = min D0 (n)
Béla Bajnok
Open problems about sumsets
ρ± (Zrp , m, h)
Elementary abelian groups Zrp with p odd prime
Theorem
p ≤ h ⇒ ρ± (Zrp , m, h) = ρ(Zrp , m, h)
Theorem
h ≤p−1
δ = 0 if h|p − 1 and δ = 1 if h 6 |p − 1
k max s.t. p k + δ ≤ hm − h + 1
c max s.t. (hc + 1) · p k + δ ≤ hm − h + 1
m ≤ (c + 1) · p k ⇒ ρ± (Zrp , m, h) = ρ(Zrp , m, h)
Conjecture
m > (c + 1) · p k ⇒ ρ± (Zrp , m, h) > ρ(Zrp , m, h)
Béla Bajnok
Open problems about sumsets
ρ± (Z2p , m, 2)
Conjecture holds for r = 2 and h = 2:
Theorem
ρ± (Z2p , m, 2) = ρ(Z2p , m, 2),
m
m ≤ p,
p 2 +1
2 , or
p−1
≤ 2 s.t.
m≥
∃c
c ·p+
p+1
2
≤ m ≤ (c + 1) · p
Proof: Via results on critical pairs by Vosper, Kemperman, and
Lev.
2
Note: m : ρ± (Z2p , m, 2) > ρ(Z2p , m, 2) = (p−1)
4
Conjecture
|m : ρ± (G , m, h) > ρ(G , m, h)| <
Béla Bajnok
n
4
for every G .
Open problems about sumsets
ρ± (Z2p , m, 2)
Theorem
m = cp + v with 0 ≤ c ≤ p − 1 and 1 ≤ v ≤ p
⇓
ρ(Z2p , m, 2)
ρ± (Z2p , m, 2)
u± (Z2p , m, 2)
c
v
0
v≤
v≥
p−1
2
p+1
2
2m − 1
p
=
=
2m − 1
p
=
=
2m − 1
p
v≤
2m − 1
<
(2c + 1)p
=
(2c + 1)p
v≥
p−1
2
p+1
2
(2c + 1)p
=
(2c + 1)p
=
(2c + 1)p
v≤
v≥
p−1
2
p+1
2
2m − 1
p2
<
=
p2 − 1
p2
<
=
p2
p2
p2
=
p2
=
p2
1≤c≤
p−3
2
c=
p−1
2
c≥
p+1
2
any v
The two boxed entries were proven by Lee.
Béla Bajnok
Open problems about sumsets
ρ± (G , m, h)—Inverse Problems
A(G , m) = Sym(G , m) ∪ Nsym(G , m) ∪ Asym(G , m) where
Sym(G , m) = {A ⊆ G : |A| = m, A = −A}
Nsym(G , m) = {A ⊆ G : |A| = m, A \ {a} = −(A \ {a})}
Asym(G , m) = {A ⊆ G : |A| = m, A ∩ (−A) = ∅}
Theorem
ρ± (G , m, h) = min{|h± A| : A ∈ A(G , m)}
Note: each type is essential.
Problem
When is
ρ± (G , m, h) = min{|h± A| : A ∈ Sym(G , m)}?
ρ± (G , m, h) = min{|h± A| : A ∈ Nsym(G , m)}?
ρ± (G , m, h) = min{|h± A| : A ∈ Asym(G , m)}?
Béla Bajnok
Open problems about sumsets
The h-critical number
χ(G , h) = min{m : A ⊆ G , |A| = m ⇒ hA = G }
χ± (G , h) = min{m : A ⊆ G , |A| = m ⇒ h± A = G }
χˆ(G , h) = min{m : A ⊆ G , |A| = m ⇒ hˆA = G }
χ(G , h) exists ∀G , h
χ± (G , h) exists ∀G , h
χˆ(G , h) exists
m
h ∈ {1, n − 1}, ∀G
h ∈ {2, n − 2}, G ∼
6 Zr
=
2
3 ≤ h ≤ n − 3, ∀G
Béla Bajnok
Open problems about sumsets
χ(G , h)
χ(G , h) = min{m : A ⊆ G , |A| = m ⇒ hA = G }
Theorem
χ(G , h) = v1 (n, h) + 1nj
k
d−1−gcd(d,g )
where vg (n, h) = max
+1 ·
h
n
d
o
: d ∈ D(n) .
Theorem (Diamanda, Yap)
max{m : ∃A ⊆ Zn , |A| = m, A ∩ 2A = ∅} = v1 (n, 3)
Theorem
max{m : ∃A ⊆ Zn , |A| = m, A ∩ 3A = ∅} = v2 (n, 4)
Theorem (Hamidoune, Plagne)
k > l, gcd(k − l, n) = 1 ⇒
max{m : ∃A ⊆ Zn , |A| = m, kA ∩ lA = ∅} = vk−l (n, k + l)
Béla Bajnok
Open problems about sumsets
χˆ(G , h)
χˆ(G , h) = min{m : A ⊆ G , |A| = m ⇒ hˆA = G }
χˆ(G , 1) = χˆ(G , n − 1) = n
Proposition
∼ Zr ⇒ χˆ(G , 2) = (n + |Ord(G , 2)| + 3)/2
G 6=
2
Proposition
(n + |Ord(G , 2)| − 1)/2 ≤ h ≤ n − 2 ⇒ χˆ(G , h) = h + 2
Problem
3 ≤ h ≤ (n + |Ord(G , 2)| − 3)/2 ⇒ χˆ(G , h) =?
Problem
3 ≤ h ≤ bn/2c − 1 ⇒ χˆ(Zn , h) =?
Béla Bajnok
Open problems about sumsets
χˆ(G , h)
Theorem (Dias da Silva, Hamidoune; Alon, Nathanson, Ruzsa)
p prime ⇒ ρˆ(Zp , m, h) = min{p, hm − h2 + 1}
Corollary
p prime ⇒ χˆ(Zp , h) = b(p − 2)/hc + h + 1
Theorem (Gallardo, Grekos, Habsieger, Hennecart, Landreau,
Plagne)
n ≥ 12, even ⇒ χˆ(Zn , 3) = n/2 + 1
Theorem
n ≥ 12, even ⇒ χˆ(Zn , h) =

 n/2 + 1

n/2 + 2
Béla Bajnok
if h = 3, 4, . . . , n/2 − 2;
if h = n/2 − 1.
Open problems about sumsets
χˆ(Zn , 3)
Case 1: {d ∈ D(n) : d ≡ 2 (3)} =
6 ∅, p smallest
Recall:
Theorem
χ(G , 3) = v1 (n, 3) + 1 = 1 + p1 n3 + 1
Theorem
n ≥ 16 ⇒  1 n

1
+

p 3 + 3 if n = p

 χˆ(Zn , 3) ≥
1 + p1 n3 + 2 if n = 3p



 1 + 1 n + 1 otherwise
p 3
Problem
χˆ(Zn , 3) = values above?
True for n prime, n even, n ≤ 50
Béla Bajnok
Open problems about sumsets
χˆ(Zn , 3)
Case 2: {d ∈ D(n) : d ≡ 2 (3)} = ∅
Recall:
Theorem
χ(G , 3) = v1 (n, 3) + 1 =
n
3
+1
Theorem
n ≥ 11 ⇒   n3 + 4 if 9|n
χˆ(Zn , 3) ≥
 n
3 + 3 otherwise
Problem
χˆ(Zn , 3) = values above?
True for n prime, n ≤ 50
Béla Bajnok
Open problems about sumsets
The critical number
χ(G , N0 ) = min{m : A ⊆ G , |A| = m ⇒ ∪∞
h=0 hA = G }
χ± (G , N0 ) = min{m : A ⊆ G , |A| = m ⇒ ∪∞
h=0 h± A = G }
χˆ(G , N0 ) = min{m : A ⊆ G , |A| = m ⇒ ∪∞
h=0 hˆA = G }
p = min{d ∈ D(n) : d > 1}
∞
∪∞
h=0 hA = ∪h=0 h± A = hAi
⇓
χ(G , N0 ) = χ± (G , N0 ) = n/p + 1
Theorem (Dias Da Silva, Diderrich, Freeze, Gao, Geroldinger,
Griggs, Hamidoune, Mann, Wou)
n ≥ 10

√⇒ χˆ(G , N0 ) =
 b2 n − 2c + 1 if G cyclic with n = p or n = pq√where
q is prime, 3 ≤ p ≤ q ≤ p + b2 p − 2c + 1

n/p + p − 1
otherwise
Béla Bajnok
Open problems about sumsets
χˆ(G , N0 )—Inverse problems
A ⊆ Zn ↔ A ⊆ (−n/2, n/2]
||A|| = Σa∈A |a|
Proposition
||A|| ≤ n − 2 ⇒ ∀b ∈ Zn , Σ(b · A) 6= Zn
Conjecture
√
p prime, A ⊆ Zp , |A| = χˆ(Zp , N0 ) − 1 = b2 p − 2c
⇓
ΣA 6= Zp ⇔ ∃b ∈ Zp \ {0}, ||b · A|| ≤ p − 2
Theorem (Nguyen, Szemerédi, Vu)
√
p prime, A ⊆ Zp , |A| ≥ 1.99 p
⇓
√
ΣA 6= Zp ⇒ ∃b ∈ Zp \ {0}, ||b · A|| ≤ p + O( p)
Béla Bajnok
Open problems about sumsets
THANK YOU!
DANKE SCHÖN!
Béla Bajnok
Open problems about sumsets