Supplementary Online Material Ingersoll, A. P., Ewald, S. P., 2016. Decadal Timescale Variability of the Enceladus Plumes Inferred from Cassini Images 1. Supplementary Figures Fig. S1. As in Fig. 4 but the wings of the plume are modeled as 1/|x|1.5 functions symmetric about the plume center. Compared with Fig. 4, which uses 1/x2 functions, the curves here turn up on the left, indicating that the 1/x2 model is better than the model displayed in this figure. Fig. S2. As in Fig. 4 but the wings of the plume are modeled as 1/|x|2.5 functions symmetric about the plume center. Compared with Fig. 4, which uses 1/x2 functions, the curves here turn down on the left, indicating that the 1/x2 model is better than the model displayed in this figure. Fig. S3. As in Fig. 11, but the points are color-coded by scattering angle. Here and in Fig. 11 the conversion from EW to slab density uses the small aggregate model of Gao et al. (2016). Used together, Figs. 7, S3, and S4 help to explain why some points move up and down relative to each other as the conversion factors change from the solid sphere model to the small aggregate model, i.e., from Fig. 8 to Fig. 11. See the main paper for details. Fig. S4. As in Fig. 11, but the points are color-coded by filter (wavelength), which includes BL1(451 nm), CLR(611 nm), RED(650 nm), IR1(752 nm), and IR2(862 nm), as given in Porco et al. (2004). Here and in Fig. 11 the conversion from EW to slab density uses the small aggregate model of Gao et al. (2016). Used together, Figs. 7, S3, and S4 help to explain why some points move up and down relative to each other as the conversion factors change from the solid sphere model to the small aggregate model, i.e., from Fig. 8 to Fig. 11. See the main paper for details. Fig. S5. As in Fig. 18 but for Δr(0) = 2100 km. This larger value of Δr(0) gives a larger boost to the points in Fig. 17 with small eccentricity compared to the points with large eccentricity. It boosts the ω points closer to the blue points at the same MA, but is also boosts the 3 and θ points farther from the blue points. Δr(0) = 2050 does the best job, but there is no single value of Δr(0) that completely collapses all the data down to a single function of MA. 2. Supplementary Description of Image Preparation To find images suitable for processing, we searched the Planetary Data System (https://pds.nasa.gov/) for observations that specified target = Enceladus. Using the NAIF/SPICE subroutine library (version ICY 1.6.0, 03-May-2010) and kernel files from the FTP site at the Jet Propulsion Laboratory, we rejected observations where the scattering angle was larger than 30° or the spacecraft/Enceladus distance was larger than 16.5 times the radius of Saturn (projected image width > 6000 km). The former step was taken because the plume is much fainter at large scattering angles, and the latter step was taken because the spatial resolution was poorer at large distances. The NAIF kernels that we used are given in Supplementary Table S1. We used CISSCAL (version 3.4 with IDL version 6.2; Porco et al., 2004; West et al., 2010) to convert the pixel values in the images to I/F, where I is the measured intensity in one of the ISS filters and πF is the incident solar flux at Enceladus in the same filter bandpass. CISSCAL also does flat-fielding and masking of saturated pixels. We manually examined all images and rejected those (1) with Saturn or other objects in the background, (2) with stray light clouding parts of the image, (3) with excessive electronic noise, and (4) those with large numbers of cosmic ray hits. Supplementary Table S2 gives the image ID number, event time, mean anomaly, spatial resolution, and the alphanumeric character (A–Z, 1–9, α-ω) for each of the 701 images that were used in our study. Supplementary Table S3 gives the image ID number and event times for each of the 394 potentially useful images that were not used in our study. Precise knowledge of the altitude requires precise knowledge of camera pointing. Uncertainties arise because the observation geometry changes rapidly as Cassini flies past Enceladus. In some cases, the bright limb of Enceladus provides a suitable reference point. In other cases the limb and the plume are overexposed, so the limb is invisible. In many of these cases we were able to use the dark limb, which stands out against the relatively bright E ring background. In some cases the camera missed Enceladus altogether and no limb was visible. These images were rejected, although they might become useful if enough stars could be identified in the background. Most of the images had the planet’s spin axis perpendicular to lines of pixels, and the others were rotated into this geometry to make the processing more uniform. 3. Supplementary Tables Table S1. List of NAIF/SPICE kernels used in this analysis. cas_v40.tf cas_iss_v10.ti naif0011.tls pcpck03Aug2015.tpc pcpck18Nov2009.tpc ppck00010.tpc cas00162.tsc C-kernels 05042_05047ra.bc 05047_05052ra.bc 05052_05057ra.bc 05067_05072ra.bc 05072_05077ra.bc 05192_05197ra.bc 05197_05202ra.bc 05331_05331ra.bc 06017_06022ra.bc 06122_06127ra.bc 06257_06262ra.bc 07112_07117ra.bc 07272_07277ra.bc 08357_08362ra.bc 09076_09081ra.bc 09286_09291ra.bc 09301_09306ra.bc 09305_09307ra.bc 09321_09326ra.bc 09341_09346ra.bc 09356_09361ra.bc 09356_09361ra.bc.lbl 10024_10029ra.bc 10059_10064ra.bc SP-kernels 050214R_SCPSE_04336_05015.bsp 050411R_SCPSE_05015_05034.bsp 050414R_SCPSE_05034_05060.bsp 050504R_SCPSE_05060_05081.bsp 050513R_SCPSE_05097_05114.bsp 050606R_SCPSE_05114_05132.bsp 050720AP_SCPSE_05119_08222.bsp 050825R_SCPSE_05186_05205.bsp 060321R_SCPSE_06005_06036.bsp 061013R_SCPSE_06240_06260.bsp 070605R_SCPSE_07106_07125.bsp 081031R_SCPSE_08220_08272.bsp 081126R_SCPSE_08272_08294.bsp 081217R_SCPSE_08294_08319.bsp 090120R_SCPSE_08319_08334.bsp 090202R_SCPSE_08334_08350.bsp 090423R_SCPSE_09028_09075.bsp 090507R_SCPSE_09075_09089.bsp 090520R_SCPSE_09089_09104.bsp 090609R_SCPSE_09104_09120.bsp 090624R_SCPSE_09120_09136.bsp 090701R_SCPSE_09136_09153.bsp 090708R_SCPSE_09153_09168.bsp 090806R_SCPSE_09168_09184.bsp 090817R_SCPSE_09184_09200.bsp 090921R_SCPSE_09200_09215.bsp 090924R_SCPSE_09215_09231.bsp 091005AP_SCPSE_09248_17265.bsp 091116R_SCPSE_09231_09275.bsp 091208R_SCPSE_09275_09296.bsp 110916R_SCPSE_05081_05097.bsp 111123R_SCPSE_11267_11303.bsp 10114_10119ra.bc 10134_10139ra.bc 10224_10229ra.bc 10289_10294ra.bc 10334_10339ra.bc 10354_10359ra.bc 11029_11034ra.bc 11274_11279ra.bc 11289_11294ra.bc 11294_11299ra.bc 11309_11314ra.bc 12004_12009ra.bc 12049_12054ra.bc 12084_12089ra.bc 12104_12109ra.bc 12119_12124ra.bc 12244_12249ra.bc 12264_12269ra.bc 12289_12294ra.bc 12344_12349ra.bc 12354_12359ra.bc 13018_13023ra.bc 13043_13048ra.bc 13056_13057ra.bc 13088_13093ra.bc 13163_13168ra.bc 13173_13178ra.bc 15128_15133ra.bc 15148_15153ra.bc 15188_15193ra.bc 15208_15213ra.bc 120227R_SCPSE_11357_12016.bsp 121130R_SCPSE_12199_12257.bsp 121204R_SCPSE_12257_12304.bsp 130319R_SCPSE_12328_13038.bsp 130321R_SCPSE_13038_13063.bsp 130710R_SCPSE_13087_13137.bsp 130805R_SCPSE_13137_13182.bsp 150330AP_SCPSE_15088_15133.bsp 060111R_SCPSE_05320_05348.bsp 060614R_SCPSE_06099_06130.bsp 080117R_SCPSE_07262_07309.bsp 090225R_SCPSE_08350_09028.bsp 100107R_SCPSE_09296_09317.bsp 100113R_SCPSE_09317_09339.bsp 100114R_SCPSE_09339_09355.bsp 100127R_SCPSE_09355_10003.bsp 100325R_SCPSE_10021_10055.bsp 100420R_SCPSE_10055_10085.bsp 100616R_SCPSE_10110_10132.bsp 100625R_SCPSE_10132_10146.bsp 101013R_SCPSE_10216_10256.bsp 101210R_SCPSE_10256_10302.bsp 110204R_SCPSE_10344_11003.bsp 110224R_SCPSE_10326_10344.bsp 110308R_SCPSE_11003_11041.bsp 120117R_SCPSE_11303_11337.bsp 120416R_SCPSE_12042_12077.bsp 120426R_SCPSE_12077_12098.bsp 120523R_SCPSE_12098_12116.bsp 120628R_SCPSE_12116_12136.bsp 150803R_SCPSE_15033_15066.bsp Table S2. Catalog of all images used in the analysis. This is a separate Excel spreadsheet. There are 701 images. The entries for each image are: filename, event time, alphanumeric group, filter, mean anomaly, pixel scale, scattering angle, equivalent width and slab density at 100 km. Table S3. Catalog of 394 Enceladus images with scattering angles less than 40° that were not used in the analysis. This is a separate Excel spreadsheet. Reasons for rejection include: other objects in the background, no visible limb for estimating altitude, saturated pixels, electronic noise, internal reflections, camera motion, insufficient background due to 45° rotation around camera axis. This table does not include images in the UV1 and IR3 filters, all of which were rejected either because they had low signal to noise or were outside the 0.8 – 11 km range of pixel scales. Table S4. ISS images analyzed both by Nimmo et al. (N14) and by the present authors (IE16). Different methods of background subtraction lead to different estimates of equivalent width (EW). The two analyzed data sets are plotted in Fig. 6. Observation Group N1516298600_1 C N1516320030_1 C N1616348791_1 H N1634159832_1 I N1634163141_1 I N1640477223_1 N N1640478423_1 N N1643187583_1 O N1643192383_1 O N1646170883_1 P N1646174483_1 P N1646179299_1 P N1646182899_1 Q N1651010460_1 r N1652824635_1 R N1665895088_1 S N1665899841_1 S N1714610318_1 5 N1725326188_1 7 Event Time 2006 JAN 18 17:33 2006 JAN 18 23:30 2009 MAR 21 17:05 2009 OCT 13 20:34 2009 OCT 13 21:29 2009 DEC 25 23:23 2009 DEC 25 23:43 2010 JAN 26 08:15 2010 JAN 26 09:35 2010 MAR 01 20:57 2010 MAR 01 21:57 2010 MAR 01 23:17 2010 MAR 02 00:17 2010 APR 26 21:16 2010 MAY 17 21:12 2010 OCT 16 03:51 2010 OCT 16 05:10 2012 MAY 01 23:46 2012 SEP 03 00:23 Our I/F N14 I/F 0.103 0.082 0.235 0.148 0.324 0.292 0.368 0.294 0.515 0.394 0.101 0.108 0.081 0.094 0.151 0.187 0.156 0.214 0.051 0.035 0.048 0.04 0.04 0.046 0.048 0.048 0.222 0.252 0.052 0.041 0.141 0.117 0.215 0.191 0.062 0.039 0.235 0.198 Table S5. VIMS/ISS pairs taken within 1 hour of each other and analyzed by Hedman et al. (H13) and by the present authors (IE16), respectively. The second column gives the group symbol as used in Fig. 8 and Tables 1 and S2. The fifth column gives the event time of the ISS image minus the event time of the VIMS image. Different methods of background subtraction lead to different estimates of equivalent width (EW). The two analyzed data sets are plotted in Fig. 6. ISS Name Gr Event Time VIMS Name dt ISS EW VIMS EW N1635804944_1 J 2009 NOV 01 21:32 V1635804941 -1.31 0.316 0.208 N1635804944_1 J 2009 NOV 01 21:32 V1635805116 -4.23 0.316 0.2017 N1635805837_1 J 2009 NOV 01 21:47 V1635806259 -8.4 0.319 0.1591 N1635805837_1 J 2009 NOV 01 21:47 V1635806434 -11.31 0.319 0.1605 N1635813923_1 N1635815815_1 N1635816494_1 N1635816588_1 N1635817014_1 N1635817014_1 N1635817014_1 N1652824635_1 N1652824635_1 N1652824635_1 N1652824635_1 N1652824635_1 N1675108551_1 N1675110296_1 N1675110586_1 N1675110586_1 N1675110586_1 N1696149778_1 N1696149778_1 N1696149778_1 N1696149778_1 N1696149778_1 N1696149778_1 N1696150608_1 N1696150608_1 N1696150608_1 N1696153348_1 N1696154178_1 N1696154178_1 N1697687812_1 N1697687984_1 N1699226814_1 N1711536357_1 N1711536547_1 N1711538072_1 N1711538262_1 N1711538452_1 N1711539977_1 N1711540357_1 N1711541882_1 N1711544167_1 N1711544167_1 N1711544167_1 K K K K K K K R R R R R V V V V V X X X X X X X X X X X X Y Y Z 3 3 3 3 3 3 3 3 3 3 3 2009 NOV 02 00:02 2009 NOV 02 00:33 2009 NOV 02 00:44 2009 NOV 02 00:46 2009 NOV 02 00:53 2009 NOV 02 00:53 2009 NOV 02 00:53 2010 MAY 17 21:12 2010 MAY 17 21:12 2010 MAY 17 21:12 2010 MAY 17 21:12 2010 MAY 17 21:12 2011 JAN 30 19:08 2011 JAN 30 19:37 2011 JAN 30 19:41 2011 JAN 30 19:41 2011 JAN 30 19:41 2011 OCT 01 07:53 2011 OCT 01 07:53 2011 OCT 01 07:53 2011 OCT 01 07:53 2011 OCT 01 07:53 2011 OCT 01 07:53 2011 OCT 01 08:06 2011 OCT 01 08:06 2011 OCT 01 08:06 2011 OCT 01 08:52 2011 OCT 01 09:06 2011 OCT 01 09:06 2011 OCT 19 03:06 2011 OCT 19 03:09 2011 NOV 05 22:36 2012 MAR 27 09:54 2012 MAR 27 09:57 2012 MAR 27 10:23 2012 MAR 27 10:26 2012 MAR 27 10:29 2012 MAR 27 10:54 2012 MAR 27 11:00 2012 MAR 27 11:26 2012 MAR 27 12:04 2012 MAR 27 12:04 2012 MAR 27 12:04 V1635813829 V1635815737 V1635816274 V1635816518 V1635817006 V1635817494 V1635817738 V1652821148 V1652821392 V1652821636 V1652822130 V1652822374 V1675109176 V1675109629 V1675110461 V1675111681 V1675111889 V1696147993 V1696148409 V1696148616 V1696148824 V1696149239 V1696149723 V1696150058 V1696150393 V1696150728 V1696153294 V1696153619 V1696153945 V1697686101 V1697688040 V1699226646 V1711536135 V1711536777 V1711537413 V1711538046 V1711538972 V1711539605 V1711540588 V1711541224 V1711544050 V1711544399 V1711544687 -0.27 -0.56 0.7 -0.76 -1.76 -9.9 -13.96 56.38 52.32 48.25 40.02 35.95 -12.15 9.38 0.15 -20.19 -23.65 27.96 21.04 17.58 14.13 7.19 -1.92 6.21 0.63 -4.96 -1.87 6.43 1.01 26.73 -2.72 0.35 1.22 -6.68 8.57 1.12 -11.51 3.79 -6.7 8.56 -0.9 -6.71 -11.51 0.418 0.527 0.518 0.551 0.58 0.58 0.58 0.052 0.052 0.052 0.052 0.052 0.037 0.038 0.037 0.037 0.037 0.124 0.124 0.124 0.124 0.124 0.124 0.128 0.128 0.128 0.147 0.147 0.147 0.111 0.111 0.098 0.087 0.089 0.092 0.098 0.095 0.104 0.102 0.119 0.141 0.141 0.141 0.3257 0.3913 0.3756 0.4105 0.4209 0.4284 0.4482 0.0936 0.0679 0.0518 0.0702 0.0564 0.0259 0.0247 0.0288 0.0315 0.039 0.0993 0.1071 0.0881 0.0965 0.099 0.1094 0.1043 0.0974 0.0957 0.0956 0.1066 0.1188 0.0779 0.065 0.0643 0.0554 0.0408 0.0534 0.0384 0.0494 0.0766 0.0734 0.0771 0.1184 0.1064 0.1143 N1711545692_1 N1711545692_1 N1711545882_1 N1711546072_1 N1711546072_1 N1711546962_1 N1711547152_1 N1711547342_4 N1711547342_4 N1711548232_1 N1711548422_1 N1711548612_1 N1711548612_1 N1711549502_1 N1711549692_1 N1711550962_1 N1711551152_1 N1711551152_1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2012 MAR 27 12:30 2012 MAR 27 12:30 2012 MAR 27 12:33 2012 MAR 27 12:36 2012 MAR 27 12:36 2012 MAR 27 12:51 2012 MAR 27 12:54 2012 MAR 27 12:57 2012 MAR 27 12:57 2012 MAR 27 13:12 2012 MAR 27 13:15 2012 MAR 27 13:18 2012 MAR 27 13:18 2012 MAR 27 13:33 2012 MAR 27 13:36 2012 MAR 27 13:57 2012 MAR 27 14:00 2012 MAR 27 14:00 V1711545033 V1711545321 V1711545666 V1711545954 V1711546301 V1711546589 V1711546939 V1711547227 V1711547571 V1711547859 V1711548206 V1711548494 V1711548846 V1711549134 V1711549477 V1711550750 V1711551038 V1711551375 8.57 3.77 1.12 -0.88 -6.66 3.8 1.07 -0.93 -6.66 3.8 1.12 -0.88 -6.75 3.72 1.1 1.05 -0.93 -6.56 0.17 0.17 0.174 0.171 0.171 0.186 0.192 0.186 0.186 0.206 0.211 0.204 0.204 0.223 0.224 0.242 0.234 0.234 Table S6. Brightness I/F per unit column density kg km-2. This is the quantity K0 defined by IE 11. It has units of km2 kg-1 and is equivalent to scattering cross section per unit mass. The numbers in the top row are the wavelengths in μm, which were chosen to match filters on the Cassini NAC. The first column contains the scattering angle in degrees. The other columns contain K0 in km2 kg-1. This table is based on the solid sphere model that IE11 derived to fit the ISS data that were taken as part of the 2006 eclipse mosaic (PIA08329). The solid sphere model was used to convert equivalent width to slab density in Fig. 8 and in related figures of this paper. 0.338 0.451 0.568 0.65 0.938 1 0.145378 0.109769 0.0836449 0.0703203 0.0422349 1.5 0.0855181 0.0739019 0.0614441 0.0539184 0.0354841 2 0.0515244 0.0498811 0.044984 0.0411518 0.0296652 2.5 0.0324801 0.0341722 0.0330587 0.0314262 0.0247386 3 0.0216495 0.0239978 0.0245451 0.0241275 0.020621 3.5 0.0152527 0.017387 0.0185116 0.0187024 0.0172134 4 0.0112884 0.0130341 0.0142408 0.0146907 0.014415 4.5 0.00871832 0.0101094 0.0112047 0.0117268 0.0121304 5 0.00698425 0.00809234 0.00902358 0.00952836 0.010272 6 0.00485047 0.00558772 0.00623636 0.00663108 0.0075334 7 0.00361904 0.00414973 0.00462159 0.00491643 0.00571539 8 0.00287347 0.00327134 0.00362588 0.00384807 0.00449346 9 0.00240775 0.00270707 0.00297494 0.00314425 0.00365186 10 0.00205829 0.00229569 0.00250811 0.00264267 0.00304876 0.1178 0.1108 0.119 0.1143 0.1306 0.1317 0.1263 0.1268 0.1326 0.1243 0.1339 0.1329 0.1486 0.1421 0.1372 0.1684 0.18 0.1886 11 12 13 14 15 16 17 18 19 20 22 24 26 28 30 35 40 45 50 0.001785 0.00158792 0.00144165 0.00130228 0.00118283 0.00109601 0.00101736 0.000932729 0.000858282 0.000800689 0.000690694 0.000598514 0.000518095 0.000447168 0.000392106 0.000275787 0.000195195 0.000139098 9.83E-05 0.00198051 0.00174887 0.00157213 0.00141399 0.00128043 0.00117931 0.0010889 0.000995845 0.000913962 0.000849648 0.000729714 0.000630376 0.000544247 0.000468785 0.000410781 0.000288412 0.000204354 0.000146035 0.000103937 0.00215655 0.00189333 0.00168896 0.00151432 0.00136869 0.00125333 0.00115104 0.00105153 0.000964009 0.000892626 0.000763621 0.000657841 0.000566354 0.000487502 0.000426109 0.000298776 0.000211846 0.000151668 0.000108499 0.00226763 0.0019847 0.00176375 0.00157851 0.00142465 0.00130015 0.0011904 0.0010868 0.000995701 0.000919727 0.000784966 0.000674894 0.000580034 0.000499209 0.000435268 0.00030493 0.000216279 0.000154994 0.000111177 0.00260096 0.00226008 0.00199241 0.00177382 0.00159289 0.00144201 0.0013111 0.00119402 0.00109125 0.0010023 0.000849942 0.000726204 0.000621803 0.000534447 0.000462588 0.000322778 0.000228664 0.000164006 0.000118335 Table S7. Brightness I/F per unit column density kg km-2. This is the same as Table S6 except it is based on the small aggregate model of Gao et al. (2016). As in Table S6, this table is a fit to ISS data from the 2006 eclipse mosaic (PIA08329). 0.338 0.451 0.568 0.65 0.938 1 0.907158 0.830796 0.694427 0.580758 0.262732 1.5 0.548577 0.575741 0.532152 0.467963 0.233973 2 0.293497 0.357947 0.374385 0.350942 0.19992 2.5 0.189884 0.240601 0.2673 0.261613 0.167028 3 0.132681 0.162964 0.186569 0.189316 0.135706 3.5 0.098767 0.119908 0.137973 0.14209 0.109943 4 0.0786551 0.0933133 0.104917 0.107859 0.0879944 4.5 0.0631043 0.0747433 0.0831148 0.0851461 0.0712859 5 0.0520326 0.062175 0.0682676 0.0691942 0.0579091 6 0.0359005 0.0446991 0.0489453 0.049048 0.0401174 7 0.025253 0.0333462 0.0371061 0.037093 0.0294995 8 0.0181113 0.0253301 0.029024 0.0291867 0.0228269 9 0.0134226 0.0194453 0.0231144 0.0235178 0.0183548 10 0.0104524 0.0150738 0.0185935 0.019232 0.0151674 11 0.00861325 0.0118497 0.0150586 0.0158647 0.0127792 12 0.00743816 0.00951103 0.0122668 0.0131656 0.0109157 13 0.00658729 0.00784873 0.0100629 0.0109734 0.00941273 14 15 16 17 18 19 20 22 24 26 28 30 35 40 45 50 0.00584988 0.0066893 0.00833942 0.00919038 0.00817397 0.0051274 0.00587876 0.00700597 0.00774105 0.00713239 0.00440159 0.00529136 0.00598729 0.00657288 0.00624474 0.00369925 0.00483233 0.00522027 0.00563852 0.00548291 0.00306033 0.00443406 0.00464243 0.00489957 0.00482458 0.00251589 0.00405717 0.00420751 0.00431969 0.00425369 0.00207952 0.00367991 0.00386901 0.00386863 0.00375949 0.0015014 0.0029238 0.00335559 0.00323897 0.00296122 0.00117702 0.00223003 0.00292068 0.00282719 0.00236976 0.000948337 0.00167653 0.00249089 0.00250941 0.00193961 0.000743132 0.00129002 0.00206459 0.0022167 0.00163105 0.000560747 0.00104071 0.0016698 0.00192404 0.00141118 0.000329917 0.00069237 0.000971756 0.00123832 0.00108432 0.000339778 0.000415843 0.00065603 0.000774277 0.000874243 0.000309558 0.00021979 0.000482308 0.000541559 0.000679651 0.000216451 0.000149366 0.000326394 0.000412524 0.000501182
© Copyright 2026 Paperzz