C OMPOSITIO M ATHEMATICA
W ILFRID W ILSON
Two theorems on product complexes
Compositio Mathematica, tome 4 (1937), p. 285-286
<http://www.numdam.org/item?id=CM_1937__4__285_0>
© Foundation Compositio Mathematica, 1937, tous droits réservés.
L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/
TWO
theorems
product complexes
on
by
Wilfrid Wilson
Urbana, Ill.
Let A be a finite n-dimensional complex and AS the ns-dimensional product complex A x A X ...X A of s factors A ; then we
have the theorems.
I. The Betti numbers of A are uniquely determined by those
of AS.
Let P2 and pi represent the i-dimensional Betti numbers of
A S and A respectively, then we have 1)
Assume that when all the Pi (i = o, 1, 2 , ... , ns) are assigned,
the pi are uniquely determined for i
0, 1, ..., m ; then Künneth’s formula gives
=
thus
Po
by
=
uniquely determining Pm+1; again Künneth’s formula gives
Pô so that po is uniquely determined by Po, hence 1 follows
induction.
II. If A and B are finite complexes the Betti numbers of B
are uniquely determined by those of A and A x B.
Assume that when all the Betti numbers of A and A X B are
assigned, the i-th Betti numbers of B for i 0, 1, ..., m are
determined, then Künneth’s formula gives
=
thus uniquely determining Pm+1{B); hence II follows by induction.
These theorems are related to the problem of Ulam 2):
If the squares A2 and B2 of the topological spaces A and B
1)
H. KÜNNETH
[Math.
Ann. 90
(1923),
65201385
(18)].
286
homeomorphic, are A and B homeomorphic?
noted that in theorems 1 and II we may replace
,,Betti numbers" by "Betti numbers and coefficients of torsion"
since Künneth’s formula is valid for the modular Betti numbers
and the modular and absolute Betti numbers determine 3 ) the
coefficients of torsion.
respectively
It might be
are
(Received, April 29th, 1936.)
2)
3)
S. ULAM [Fundamenta Math. 20 (1933), 285].
J. W. ALEXANDER [Trans. Am. Math. Soc. 28 (1926), 301-329;
12.14].
© Copyright 2025 Paperzz