VNA Calibration

Multi Port Measurements
Slides from Dave Blackham and Ken Wong
At Agilent Technologies
With some additions by Doug Rytting
Dave Blackham
& Ken Wong
1
Agenda
Two Port Network Analysis
Multiport Network Analysis
Multiport Network Analysis Port Match Correction
Single Reference Receiver Example
Multiport Using a 2-port VNA Example
Multiport Calibration Approach
How Many Connections Are Needed
Examples
2
Network Analyzer Block Diagram
RF
Source
a0
IF
IF
a3
LO
Source
IF
IF
b0
b3
Port - 1
Cable
a1
b2
DUT
b1
Port - 2
Cable
a2
3
8-Term Error Model
a0
b0
a0
b0
X
Error
Adapter
a1
b1
Perfect
Reflectometer
Imperfect
Switch
DUT
Y
Error
Adapter
a3
b3
a3
b3
a2
b2
8 Error Terms
To remove the effects of an imperfect switch, use the procedure described later.
4
8-Term Error Model
a0
a0
a1
e10
e00
e11
X Error Adapter
e01
b0
b0
DUT
b1
b1
S12
a3
a3
b3
S21
S22
a2
a2
e23
e33
a1
S11
b2
e22
Y Error Adapter
e32
b3
b2
One of the 8 error terms can be normalized to yield 7 error terms
5
8-Term Error Model
b0 
b 
 3 
a 0 
 
a 3 
 T1
T
 3
 a1 
T2  a2 
 
T4   b1 
 
b2 
 
T1   X
 0
0 
 kY 
e
T2   00
0
 e
T3   11
 0
0 
 ke22 
1 0
T4  

0 k 
k
0 
ke33 
e10
,  X  e00 e11  e10 e01 , Y  e22 e33  e32 e23
e23
6
8-Term Error Model
Measured S-Parameters
SM = (T1S + T 2)(T3S + T4)-1
Actual S-Parameters
S = (T 1 - SMT3)-1(SMT4 - T2)
Linear-in-T Form
T1S + T 2 - SMT3S - SMT4 = 0
Expanding Yields:
e00 + S11S11Me11
- S11X
+0
+ S21S12M(ke 22)
+0
+0
= S11M
0
+ S12S11Me11
- S12X
+0
+ S22S12M(ke 22)
+0
- S12Mk
=0
0
+ S11S21Me11
+0
+0
+ S21S22M(ke 22)
- S21(kY)
+0
= S21M
0
+ S12S21Me11
+0
+ (ke 33)
+ S22S22M(ke 22)
- S22(kY)
- S22Mk
=0
7
8-Term Calibration Examples
Seven or more independent known conditions must be measured
A known impedance (Z 0) and a port-1 to port-2 connection are required
TRL & LRL
Thru (T) or Line (L) with
known S-parameters
[4 conditions]
Unknown equal Reflect (R)
on port-1 and port-2
[1 condition]
Line (L) with known
S11 and S 22
[2 conditions]
TRM & LRM
Thru (T) or Line (L) with
known S-parameters
[4 conditions]
Unknown equal Reflect (R)
on port-1 and port-2
[1 condition]
Known Match (M)
on port-1 and port-2
[2 conditions]
TXYZ & LXYZ
Thru (T) or Line (L) with
known S-parameters
[4 conditions]
3 known Reflects (XYZ)
on port-1 or port-2
[3 conditions]
Traditional
TOSL
(Overdetermined)
Thru (T) with
known S-parameters
[4 conditions]
3 known Reflects (OSL)
on port-1
[3 conditions]
LRRM
Line (L) with known
S-parameters
[4 conditions]
2 unknown equal Reflects
(RR) on port-1 and port-2
[2 conditions]
3 known Reflect (OSL)
on port-2
[3 condition]
Known match (M)
on port-1
[1 condition]
UXYZ
Unknown Line (U) with
S12 = S21
[1 condition]
3 known Reflects (XYZ)
on port-1
[3 conditions]
3 known Reflects (XYZ)
on port-2
[3 conditions]
8
Measuring S-parameters
Removing Port Match Changes Caused by Switch
a0
b0
a0
a1
b0
Forward
Error
Adapter
Perfect
Reflectometer
Reverse
b1
a3
DUT
[S]
a2
b3
a3
b2
b3
Forward
b0 = S11Ma0 + S12Ma3
b3 = S21Ma0 + S22Ma3
Reverse
b' 0 = S11Ma'0 + S12Ma'3
b' 3 = S21Ma'0 + S22Ma'3
9
Measuring S-parameters
By defining
1 
S11M
S 21M
a
a0
and 2  3
b3
b0
b0 b'0 b 3
2

a0 a'3 a0

d
S12M
b3 b'3 b3
2

a0 a'3 a0

d
S 22M
d  1
b'0 b0 b'0
1

a'3 a0 a'3

d
b'3 b3 b'0
1

a'3 a0 a'3

d
b3 b'0
12
a0 a'3
10
Agenda
Two Port Network Analysis
Multiport Network Analysis
Multiport Network Analysis Port Match Correction
Single Reference Receiver Example
Multiport Using a 2-port VNA Example
Multiport Calibration Approach
How Many Connections Are Needed
Examples
11
Multiport error correction
Is multiport error correction hard?
Dave Blackham
& Ken Wong
12
Multiport error correction
Is multiport error correction hard?
No, multiport error correction with constant
match is as easy as single port error
correction.
Dave Blackham
& Ken Wong
13
Multiport error box diagram
bmi  ei00 ami  ei01bi
a1
am1
E1
Ideal
VNA
bm1
b1
am 2
a2
ai  ei10 ami  ei11bi
E2
bm 2
b2
amn
an
DUT
En
bmn
bn
Dave Blackham
& Ken Wong
14
Multiport error box diagram
bmi  ei00 ami  ei01bi
a1
am1
E1
Ideal
VNA
bm1
b1
am 2
a2
ai  ei10 ami  ei11bi
bmi  ei00
 a    10
 i   ei
E2
bm 2
b2
amn
an
ei01   ami 


11  
ei   bi 
DUT
En
bmn
bn
Dave Blackham
& Ken Wong
15
Multiport error box diagram
a1
am1
bmi  ei00 ami  ei01bi
E1
b1
bm1
bmi  ei00
 a    10
 i   ei
a2
am 2
Ideal
VNA
ai  ei10 ami  ei11bi
E2
bm 2
b2
amn
an
DUT
ei00
Ei   10
 ei
ei01   ami 


11  
ei   bi 
ei01 
11 
ei 
En
bmn
bn
Dave Blackham
& Ken Wong
16
Multiport error box diagram
bmi  ei00 ami  ei01bi
a1
am1
E1
Ideal
VNA
bm1
b1
am 2
a2
ai  ei10 ami  ei11bi
bmi  ei00
 a    10
 i   ei
E2
b2
bm 2
DUT
bi
e e
bmi
ai
00
 ei 
b
ami
1  ei11 i
ai
En
bmn
ei01 
11 
ei 
10 01
i i
an
amn
ei00
Ei   10
 ei
ei01   ami 


11  
ei   bi 
bn
Dave Blackham
& Ken Wong
17
Multiport error box diagram
bmi  ei00 ami  ei01bi
ai  ei10 ami  ei11bi
a1
am1
E1
Ideal
VNA
bm1
b1
am 2
a2
E2
bm 2
b2
amn
an
DUT
En
bmn
bn
Dave Blackham
& Ken Wong
 a1 
 b1 
 
 
 
 
a   ai  ; b   bi  ;
 
 
 
 
 an 
bn 
 am1 
 bm1 
 
 
 
 
a m   ami  ; b m   bmi  ;
 
 
 
 
 amn 
bmn 
b m   00  01  a m 

 a    10

11  
  b
  
18
Multiport error box diagram
a1
am1
b m    00
 a    10
  
E1
Ideal
VNA
bm1
b1
am 2
a2
 01  a m 
 
11   b 
S m  b m a m 
1
S a  b a 
1
E2
1
bm 2
b2
amn
an
DUT
S m   00   01 S a I  11 S a  10
1
1
Sˆ n   01  S m   00   10 
ˆS  S I  11 S  1
n
a 
a
S a  Sˆ n I  11 Sˆ n 
1
En
bmn
bn
Dave Blackham
& Ken Wong
19
Multiport error box diagram
For the non-leaky model
 00 , 10 ,  01 , and  00 are
a1
am1
each diagonal matricies
E1
Ideal
VNA
bm1
b1
am 2
a2
E2
b2
bm 2
DUT
 S11  e100
 10 01
 e1 e1
 S 21

01
Sˆ n   e10
2 e1


 S n1
 e10 e01
 n 1
an
amn
En
bmn
e1ik 0
0


ik
0
e
ik
2

 

0


0 enik 
 0
1
1
Sˆ n   01  S m   00  10 
bn
Dave Blackham
& Ken Wong
S12
e110 e201
S 22  e200
01
e10
2 e2
S1n 

e110 en01 





00
S nn  en 
01 
e10
n en

20
Multiport error box diagram
with “12 term” crosstalk
am1
For the multiport equivalent to two-port
a1
12 term model  00 fills out to include
E1
Ideal
VNA
additional isolation terms
bm1
b1
am 2
a2
E2
bm 2
b2
amn
DUT
 S11  e100
 10 01
 e1 e1
 S  e00
21
2:1
ˆS   e10 e01
n
 2 1


 S n1  en00:1
 e10 e01
 n 1
an
En
bmn
00
e100 e1:2
e1:00n 
 00 00

e
e
00

   2:1 2


 00

en00 
en:1
1
1
Sˆ n   01  S m   00  10 
bn
Dave Blackham
& Ken Wong
00
S12  e1:2
e110 e201
S 22  e200
01
e10
2 e2
S1n  e1:00n 

e110 en01 





S nn  en00 
01 
e10
n en

21
Multiport error box diagram
with full leaky model
am1
1
bm1
b1
am 2
a2
include additional crosstalk terms
n+2
E
bm 2
 00 , 10 ,  01 , and 11 all fill out to
n+1
2
Ideal
VNA
For the multiport full leaky model
a1
b2
DUT
ij
 e1ij e1:2
 ij
e2:1 e2ij
ij

 

 ij
en:1
e1:ijn 




enij 
S m   00   01   I  S a  11   S a  10
1
1
1
 01
 S m  S a  11   01
 Sm
amn
n
bmn
1
1
S a  11   01
  00  10    01
  00  0
an
K  Sm  Sa  L  Sm  Sa  H  M  0
2n
S a  K  S m  M   L  S m  H 
1
bn
Dave Blackham
& Ken Wong
22
Agenda
Two Port Network Analysis
Multiport Network Analysis
Multiport Network Analysis Port Match Correction
Single Reference Receiver Example
Multiport Using a 2-port VNA Example
Multiport Calibration Approach
How Many Connections Are Needed
Examples
23
Multiport error correction
Models presented thus far assume a constant port
match
similar to 8 term two-port model for non-leaky case
similar to 16 term two-port model for leaky case
Due to switching, port match is not constant
similar to 12 term two-port model
Dave Blackham
& Ken Wong
24
What Is Switch Correction?
TRL and unknown thru algorithms belong to a class that
assumes a constant match at each test port.
In reality, the match at each test port will vary as the
source is switched from port to port.
Switch correction is the process of characterizing the match
difference then factoring it out of the calibration process
Generalized s-parameters factor out match differences during raw
measurements for receivers that have dual couplers at each port
(reference receiver at each port).
Two-tier calibration approaches characterize match differences with
a first tier calibration using SOLT. This allows the use of generalized
s-parameters approach for systems that have a single reference
receiver.
Dave Blackham
& Ken Wong
25
Ideal S-Parameters
Ideal s-parameters
Non-source ports terminated
in perfect match—incident
signal only from source port
aˆii
aii
ii
bˆii
 S11
S
 21


 Sn1
aki
N port DUT
bii
ki
aji
 ji
bˆji
bki
bˆki
bji
ani
ni
bni
bˆni
Dave Blackham
& Ken Wong
S12
S22
Sn 2
S1n   bˆ11 bˆ12

S2 n  bˆ21 bˆ22

 
 
Snn  bˆ bˆ
 n1 n 2
 bˆ11 bˆ12

 aˆ11 aˆ22
 bˆ
ˆ
 21 b22
  aˆ11 aˆ22


 bˆ
bˆn 2
 n1
 aˆ11 aˆ22
bˆ1n 

bˆ2 n 


bˆnn 
 aˆ11
0



0
0
0 


aˆnn 
0
aˆ22
0
bˆ1n 

aˆnn 
bˆ2 n 
aˆnn 


ˆ
bnn 

aˆnn 
26
1
Use Generalized S-Parameters
Ideal s-parameters
aˆii
Non-source ports terminated in
perfect match—incident signal only
from source port
aii
ii
bˆii
 S11
S
 21


 S n1
aki
N port DUT
bii
ki
aji
 ji
bˆji
bki
bˆki
S12
S 22
Sn 2
 bˆ11

 aˆ11
S1n  
bˆ
S 2 n   21
  aˆ
  11

S nn  
 bˆ
 n1
 aˆ11
bˆ1n 

aˆnn 
bˆ2 n 
aˆnn 


ˆ
bnn 

aˆnn 
bˆ12
aˆ22
bˆ22
aˆ22
bˆn 2
aˆ22
Generalized s-parameters
bji
ani
ni
Uses incident signals from all ports
& removes port match error
bni
bˆni
 S11
S
 21


 S n1
S12
S 22
Sn 2
Dave Blackham
& Ken Wong
S1n   b11 b12
S 2 n  b21 b22

 
 
S nn  bn1 bn 2
b1n 
b2 n 


bnn 
 a11
a
 21


 an1
a1n 
a2 n 


ann 
a12
a22
an 2
27
1
Agenda
Two Port Network Analysis
Multiport Network Analysis
Multiport Network Analysis Port Match Correction
Single Reference Receiver Example
Multiport Using a 2-port VNA Example
Multiport Calibration Approach
How Many Connections Are Needed
Examples
28
Single Reference Receiver
RF
LO
Recr R
Rcvr A
Port-A
Port-B
Rcvr D
Rcvr C
Rcvr B
Port-C
Dave Blackham
& Ken Wong
Port-D
29
S-parameter measurement
(two-port, ideal)
b1f   S11 S12   a1f 
 f
 
S
S
b
22   0 
 2   21
b1f
b2f
S11  f ; S 21  f
a1
a1
Forward s-parameters
Source at port 1
b1r   S11 S12   0 
 r  
 a r 
S
S
b
 2   21 22   2 
b1r
b2r
S12  r ; S 22  r
a2
a2
Reverse s-parameters
Source at port 2
Dave Blackham
& Ken Wong
30
S-parameter measurement
(two-port, ideal)
b1r   S11 S12   0 
 r  
 a r 
S
S
b
 2   21 22   2 
b1r
b2r
S12  r ; S 22  r
a2
a2
b1f   S11 S12   a1f 
 f
 
S
S
b
22   0 
 2   21
b1f
b2f
S11  f ; S 21  f
a1
a1
b1f
 f
b2
 S11
S
 21
b1r   S11

r
b2   S 21
S12  b1f
 f

S 22  b2
S12   a1f

S 22   0
b 

b 
r
1
r
2
 a1f

0
Dave Blackham
& Ken Wong
0

a2r 
0
r
a2 
1
31
S-parameter measurement
(two-port, non-ideal)
Generalized s-parameters
 S11
S
 21
S12  b


S 22  b
f
1
f
2
b 

b 
r
1
r
2
a

a
f
1
f
2
a 

a 
r
1
r
2
1
• Dual reflectometers at each testport allow measurement of all signals required
to determine s-parameters.
• Using this method will correct for the changing port match caused by the switch.
Dave Blackham
& Ken Wong
32
S-parameter measurement
(two-port, non-ideal)
Generalized s-parameters
 S11
S
 21
S12  b


S 22  b
f
1
f
2
b 

b 
r
1
r
2
a

a
f
1
f
2
a 

a 
r
1
r
2
1
• Dual reflectometers at each testport allow measurement of all signals required
to determine s-parameters.
• Benefit allows constant match to be assumed for error correction (eight term
model)
• Match variations tracked by incident wave measurements
Dave Blackham
& Ken Wong
33
S-parameter measurement
(two-port, non-ideal)
• Non dual reflectometer analyzers can’t measure signals reflected from switch
in off position.
• Requires mathematical equivalent computed from difference between source
and load match at each port (delta match)
• Generalized S-parameter in ratio form:
 S11
S
 21
b
S12   a
 f

S 22   b2
 f
 a1
f
1
f
1
b 
1


a 
b2r   a2f
r   f
a2   a1
r
1
r
2
Dave Blackham
& Ken Wong
a 
a 

1

r
1
r
2
1
34
S-parameter measurement
(two-port, non-ideal)
Need to replace a2f and a1r terms.

1

 a2f
 f
 a1

1

 a2f
 f
 a1
1
1

a 
1


a 
 f f

 b2 a2
1
 f f

 a1 b2
r
1
r
2

a 
b b a
1


a   S11 S12  a a b
 f f  f

  S 21 b2 Sa222  b2
1
 f f  1f

 a1 b2
 a1
r
1
r
2
1

b a 
1


a b 
 f

 b2
1 
 f f

 a1
r
1
r
2
r f
1 1
r f
21
r
1
r
1
r
1
r
1
1r
 b1  
a
 a r   11 a
 2  
 b2r  ba2f2f
 r   f f  f 1
 a2  aa11
Dave Blackham
& Ken Wong
r
1
r
2

b
r 
a


1 

r
1
r
2
1
r
1
r
2

b
a  r 




1 


1
1
35
Calculate F and R
For Single Reference Receiver
Error terms were measured during the first tier calibration using SOLT.
With F and R determined the generalized s-parameters can be used to
remove the port match variations.
Also TRL or unknown thru, etc. can be used in a second tier calibration.
a1
ERR/

b2
EDR
ELF
F
ETF
F
ESR
ELF  ESR

ERR  EDR ( ELF  ESR )
a2f  b2f F

R 
ERF
ELR  ESF
 EDF ( ELR  ESF )
and a1r  b1r  R
Dave Blackham
& Ken Wong
36
Agenda
Two Port Network Analysis
Multiport Network Analysis
Multiport Network Analysis Port Match Correction
Single Reference Receiver Example
Multiport Using a 2-port VNA Example
Multiport Calibration Approach
How Many Connections Are Needed
Examples
37
Multiport Using a 2-port VNA Example
RF
Rcvr A
Rcvr B
Recr R
Recr R
LO
Switches Terminated
in off state
Dave Blackham
& Ken Wong
38
Multiport Using a 2-port VNA
Let:
Smi:j = measured S-parameters between ports i and j.
Rmi:j = Port impedance normalized Scattering Matrix
i:j = Diagonal matrix of reflection coefficient of imperfect
port terminations at ports i and j. [i..N values must not
change when signal paths are changed.]
i
ij
 i


S
S
i:j
11
12
Sm   ji
; i:j  
j 
S21 S22 
0
0
; i 1

j 
Rmi:j   *i:j  Smi:j  I  i:jSm

i:j 1
Dave Blackham
& Ken Wong
 R i:i
  j:i
R
N,
ji
R i:j 

R j:j 
39
Multiport Using a 2-port VNA
Let:
Rn = Composite port impedance normalized N-port Scattering Matrix
[Rn] matrix
R1:1
R2:1
R1:2
R2:2
•Fill Rn matrix with calculated Rm sub-matrices
i=1, j=2
Dave Blackham
& Ken Wong
40
Multiport Using a 2-port VNA
Let:
Rn = Composite port impedance normalized N-port Scattering Matrix
[Rn] matrix
R1:1
R2:1
R1:2
R2:2
R3:2
R2:3
R3:3
•Fill Rn matrix with calculated Rm sub-matrices
i=2, j=3
Dave Blackham
& Ken Wong
41
Multiport Using a 2-port VNA
Let:
Rn = Composite port impedance normalized N-port Scattering Matrix
[Rn] matrix
R1:1
R2:1
R3:1
R1:2
R2:2
R3:2
R1:3
R2:3
R3:3
•Fill Rn matrix with calculated Rm sub-matrices
i=1, j=3
Dave Blackham
& Ken Wong
42
Multiport Using a 2-port VNA
Let:
Rn = Composite port impedance normalized N-port Scattering Matrix
[Rn] matrix
R1:1
R2:1
R3:1
Ri:1
Rj:1
RN:1
R1:2
R2:2
R3:2



R1:3
R2:3
R3:3






Ri:i
Rj:i




Ri:j
Rj:j

R1:N
R2:N
R3:N
Ri:N
Rj:N
RN:N
•Fill Rn matrix with calculated Rm sub-matrices
Do N(N-1)/2 2-port measurements to fill
Dave Blackham
& Ken Wong
43
Multiport Using a 2-port VNA
Let:
Rn = Composite port impedance normalized N-port Scattering Matrix
n = Diagonal matrix of reflection coefficient of imperfect port
terminations at ports 1 to N.
Sn = S-parameters of corrected N-port
•Normalize Result back to System Impedance
 1 0  0 
0 

0
0
1
2

Sn   I  Rn n   Rn  n *  ; n  
 



0
0


N

Dave Blackham
& Ken Wong
44
Agenda
Two Port Network Analysis
Multiport Network Analysis
Multiport Network Analysis Port Match Correction
Single Reference Receiver Example
Multiport Using a 2-port VNA Example
Multiport Calibration Approach
How Many Connections Are Needed
Examples
45
Multiport calibration Approach
Use all of the same calibration standards
used by two port calibrations.
Brute force method: calibrate all possible
two-port pairs
This will get tedious very quickly as the number
of ports increases
Cn:r
Cn:2
n
n!
 
 r  r ! n  r  !
 n  n  n  1
 
2
 2
n
2
3
4
6
Cn:2 1
3
6
15 28 66
Dave Blackham
& Ken Wong
8
12
46
Multiport calibration error terms
Path terms
Port terms
n *  n  1 sets of path terms
n sets of terms
Directivity  ei00 
Reflection tracking  e e
10 01
i
i
Source match  ei11S 
ek01
Transmission tracking  ei10 e01
j 
 Crosstalk  e 
00
ij
Load match  ei11L 
e
e10
k
e01
j
ei10
ei11
ei00
ei01
Dave Blackham
& Ken Wong
ek00
11
k
e00
j
e11j
e10j
47
Minimizing Connections During
Multiport calibration
Characterize each set of port terms once (n).
Characterize (n-1) thru standards to characterize
(n) load match terms and 2x(n-1) sets of
transmission tracking terms. Compute the other
(n-1)x(n-2) transmission tracking terms.
If desired, connect loads to each port then
characterize n x (n-1) sets of crosstalk terms.
Full leaky model would connect multiple
permutations of one port reflection standards to
the ports and measure n x (n-1) paths for each
permutation.
Dave Blackham
& Ken Wong
48
Required Number of Thrus
Connect (n-1) thru connections and characterize
2x(n-1) transmission tracking terms.
The other (n-1)x(n-2) terms can be calculated.
Port 1
Port 2
Port 3
Port N
Required Thrus
Dave Blackham
& Ken Wong
49
Compute Transmission Tracking
Characterize transmission tracking between ports i and j
Characterize transmission tracking between ports i and k
Compute transmission tracking between ports j and k
Accuracy of computed transmission tracking terms less
than characterized transmission tracking terms.
Actual equation includes compensation for varying port
match (source match not equal to load match at port i).
transmission tracking transmission tracking
port j to port i
port i to port k
e
10 01
j i
e

e
e

10 01
i
k
10 01
i i
e
e


e10j  ei10ei01  ek01
reflection tracking
port i
Dave Blackham
& Ken Wong
e
10 01
i i
e


e
10 01
j k
e

transmission tracking
port j to port k
50
Agenda
Two Port Network Analysis
Multiport Network Analysis
Multiport Network Analysis Port Match Correction
Single Reference Receiver Example
Multiport Using a 2-port VNA Example
Multiport Calibration Approach
How Many Connections Are Needed
Examples
51
Multiport Mechanical Cal
Port 1
Mechanical Cal Method
Port 2
Precision Mechanical 2-port Cal (SOLT or TRL)
Port 3
Port 1
Port 4
AND
Port 2
Finish 4-port Cal
Using Unknown Thru.
Only Transmission tracking
needs to be determined.
Port 3
Port 4
Unknown Thrus (adapters)
Dave Blackham
& Ken Wong
52
ECal 1
Multiport ECal Cal
Port 1
ECal 2
ECal Method
Port 3
Port 1
AND
Port 2
Port 4
Port 2
Finish 4-port Cal
Using Unknown Thru.
Only Transmission tracking
needs to be determined.
Port 3
Port 4
Unknown Thrus (adapters)
Dave Blackham
& Ken Wong
53
Multiport Unknown Thru Cal
Port 1
Can have different
connector on
Each Port
Port 2
1-Port Calibrations, ECal or Mech
Port 3
Port N
Port 1
Port 2
Finish 4-port Cal
Using Unknown Thru.
Only Transmission tracking
needs to be determined.
Port 3
Port N
Unknown Thrus (Adapters)
Dave Blackham
& Ken Wong
54
Multiport On-Wafer Cals
Port 1
Straight Thrus
Port 2
TRL on Wafer Cal
Port 3
Port 4
AND
Port 1
Port 2
Finish 4-port Cal
Using Unknown Thru.
Only Transmission tracking
needs to be determined.
Port 3
Port 4
Imperfect Unknown Thrus
Dave Blackham
& Ken Wong
55
Advantages of Unknown Thru
Calibration in Multiport Systems
Unknown Thru is very convenient for right-angle or notin-line thru calibrations.
S-parameters of the thru standard need not to be
characterized.
Eliminates the need to move test ports and cables or
probes.
Passive DUTs may be used as the unknown thru.
Noninsertable cal (mix connectors, transitions, F-F or MM combinations) is just as easy as an insertable cal
Dave Blackham
& Ken Wong
56