Crowdsourcing Based Indoor Localization Shen Ruofei 2015.3.10--present Outline S.J.T.U. Introduction Background Related Work Motivation Incomplete Database Future Work Background S.J.T.U. Wi-Fi fingerprinting based indoor localization Location 2 Location Fingerprint 1 Location 3 Fingerprints collection Fingerprint Location Fingerprint 4 Training Stage Fingerprint Fingerprints database Fingerprint Localization Stage Location 3 Fingerprints database Related Work S.J.T.U. Probabilistic Models Used for Indoor Localization Crowdsourcing based Indoor Localization [1] K. Chintalapudi, A. P. Iyer, V. N. Padmanabhan, “Indoor localization without the pain” , in Proc. ACM MobiCom, 2010, pp. 173-184. [2] Z. Yang, C. Wu and Y. Liu, “Locating in fingerprint space: Wireless indoor localization with little human intervention”, in Proc. ACM MobiCom, 2012, pp. 269– 280. [3] C. Wu, Z. Yang, Y. Liu and W. Xi, “WILL: Wireless indoor localization without site survey”, in Proc. INFOCOM, 2012, pp. 64-72. Motivation S.J.T.U. Previous works are all done over a perfect database, what the results would be if the database is incomplete? Outline S.J.T.U. Introduction Incomplete Database System Model Error Probability Best Strategy Future Work System Model S.J.T.U. Received Signal Strength : How RSS readings varies with respect to locations : Normalized Gaussian additive noise System Model S.J.T.U. Sample Space & Physical Space physical space: Radius: δ User’s location: Q sample space: Physical space Event: E(δ) sample space System Model S.J.T.U. Data Fluctuation due to the Gaussian Noise one dimension case Law of large numbers System Model S.J.T.U. Data Fluctuation due to the Gaussian Noise Two dimension case System Model S.J.T.U. Real database n dimensional Gaussian distribution Error Probability S.J.T.U. Integration Area Direct Integration Area: ①+②+③ Indirect Integration Area: (①+④+③)+(②-④) Error Probability S.J.T.U. Intermediate Integration Results p r2 y r1 y L h tan 0 2 de1 tan e1 h 1 e 2 2 e12 e2 2 2 2 de2 Some variables r1 (r1x , r1 y ) r2 (r2 x , r2 y ) tan sin y0 x0 cot h cot sin y0 r2 y r1 y L r1 y r2 y 2 r1x r2 x x0 2 Error Probability S.J.T.U. Error Probability P r2 y r1 y h L N 4 2 e1 2 1 2 2 e e12 e22 2 2 e 4 N ( r12x r12y r22x r22y ) 2 2 hL 2 r2 y r1 y de1 de2 dr1x dr1 y dr2 x dr2 y 0 2 3 2 LN Error Probability S.J.T.U. Upper Bound and Lower Bound y cot x0 y cot x0 1 erf ( 0 )erf ( 0 ) p2 4 2 cot 2 y0 cot x0 y0 cot x0 1 erf ( )erf ( ) 2 2 cot 2 Error Probability S.J.T.U. Simulation Results Best Strategy S.J.T.U. After the establishment of database, we should choose which AP RSS data are superior than others n* arg max ( Z i ) 2 n n i n Zi i n 2 Best Strategy S.J.T.U. Greedy Algorithm N 2 PN 1 Pi 2 PPN 1 cos(2 ) cos(2N 1 ) sin(2 )sin(2N 1 ) i 1 Dynamic Programming Outline S.J.T.U. Introduction Incomplete Database Future Work Experiment Best Strategy Experiment S.J.T.U. Android Application experiment Use the Android Application to establish a real database to verify our theory work Experiment S.J.T.U. The Marauder‘s Map(活点地图) Best Strategy S.J.T.U. Whether best strategy is a NP question or whether we could use the Dynamic Programming method to solve this problem? S.J.T.U. Q&A S.J.T.U. Thank You
© Copyright 2026 Paperzz