CLASSICAL AND EVOLUTIONARY ALGORITHMS IN THE OPTIMIZATION OF OPTICAL SYSTEMS Genetic Algorithms and Evolutionary Computation Consulting Editor, David E. Goldberg University of Illinois at Urbana-Champaign [email protected] Additional titles in the series: Efficient and Accurate Parallel Genetic Algorithms, Erick Cantu-Paz ISBN: 07923-7221-2 Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, edited by Pedro Larranaga, Jose A. Lozano ISBN: 0-7923-7466-5 Evolutionary Optimization In Dynamic Environments, Jurgen Branke 7923-7631-5 Anticipatory Learning Classifier Systems, Martin V. Butz ISBN: 0- ISBN: 0-7923-7630-7 Evolutionary Algorithms for Solving Multi-Objective Problems, Carlos A. Coello Coello, David A. Van Veldhuizen, and Gary B. Lamont ISBN: 0-306-46762-3 OmeGA: A Competent Genetic Algorithm for Solving Permutation and Scheduling Problems, Dimitri Knjazew ISBN: 0-7923-7460-6 The Design of Innovation: Lessons from and for Competent Genetic Algorithms, David E. Goldberg ISBN: 1-4020-7098-5 Noisy Optimization with Evolution Strategies, Dirk V. Arnold ISBN: 1-40207105-1 Genetic Algorithms and Evolutionary Computation publishes research monographs, edited collections, and graduate-level texts in this rapidly growing field. Primary areas of coverage include the theory, implementation, and application of genetic algorithms (GAs), evolution strategies (ESs), evolutionary programming (EP), learning classifier systems (LeSs) and other variants of genetic and evolutionary computation (GEe). Proposals in related fields such as artificial life, adaptive behavior, artificial immune systems, agent-based systems, neural computing, fuzzy systems, and quantum computing will be considered for Genetic Algorithms and publication in this series as long as GEe techniques are part Evolutionary Computation of or inspiration for the system being described. Manuscripts describing GEe applications in all areas of engineering, commerce, the sciences, and the humanities are encouraged. http://www.wkap.nl/prod/s/GENA GENAGENAGENA GENAGENAGENA CLASSICAL AND EVOLUTIONARY ALGORITHMS IN THE OPTIMIZATION OF OPTICAL SYSTEMS by Darko Vasiljevic Military Technical Institute, Yugoslavia Military Academy, Yugoslavia Mechanical Engineering Faculty, University of Belgrade, Yugoslavia KLUWER ACADEMIC PUBLISHERS Boston I Dordrecht I London Distributors for North, Central and South America: Kluwer Academic Publishers 101 Philip Drive; Assinippi Park Norwell, Massachusetts 02061 USA Telephone (781) 871-6600 Fax (781) 681-9045 E-Mail: [email protected] Distributors for all other countries: Kluwer Academic Publishers Group Post Office Box 322 3300 AH Dordrecht, THE NETHERLANDS Telephone 31 786 576 000 Fax 31 786576474 E-Mail: [email protected] ..... " Electronic Services <http://www.wkap.nl> Library of Congress Cataloging-in-Publication Data Vasiljevic, Darko, 1960Classical and evolutionary algorithms in the optimization of optical systems I by Darko Vasiljevic. p. cm. -- (Genetic Algorithms and Evolutionary Computation; 9) Includes bibliographical references and index. ISBN: 1-4020-7140-X (alk. paper) 1. Optical instruments--Design and construction. 2. Lenses--Design and construction. 3.0ptics--Mathematics. 4. Genetic algorithms. I. Title. II. Series. QC372.2.D4 V37 2002 681' 4--dc21 2002069474 Copyright © 2002 by Kluwer Academic Publishers All rights reserved. No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without the written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Permission for books published in Europe: [email protected] Permissions for books published in the United States of America: [email protected] Printed on acid-free paper. To Rada Contents Preface •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• IX Acknowledgments••••••••.••••••••.•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.•••••• xiii Chapter 1 Chapter 2 Introduction.•..•.•.•.•.••.•.••..••••••.•••.••.•....•..•.•.••.•..••••.•••.•••••••••••••••••••••••••• 1 Classical algorithms in the optimization of optical systems ............................................................................. 11 Chapter 3 Genetic algorithms ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 41 Chapter 4 Evolution strategies•••••••••••••••••••••••••••.••••.••••.••.•.••••.•••.•.•••.•••..•••...•.•.• 69 ChapterS Comparison of optimization algorithms ........................................ 83 Chapter 6 Ray trace .••••.•••..••.•.•.••••.•.•••.•••••••••••••••••••.••••••••••••••••••••••••••••••••••••••.•.• 89 Chapter 7 Aberrations ••••••.••••••••••••.•.•.••.•••.•••••..•.•..•.••.••••.••••••••.•••••.•••.••••••••••••• 101 Chapter 8 Damped least squares optimization implementation ••..•••.•.•....... 119 Chapter 9 Adaptive steady-state genetic algorithm implementation •••••••••••••••••..•••••.•..•••.••.•••••.••••.•••••••••••••••••••••••••••.•••• 137 Chapter 10 Two membered evolution strategy ES EVOL implementation ............................................................ 155 Chapter 11 Multimembered evolution strategies ES GRUP and ES REKO implementation .•••••.•••..•••..•••....•..••••...•••.•.••.••••••••••••••••• 165 Chapter 12 Multimembered evolution strategy ES KORR implementation •••••••••••••••••••••••••.••••.•••.•••••••.••••••••.•••••••• 175 Chapter 13 The Cooke triplet optimizations ................................................... 187 Chapter 14 The Petzval objective optimizations ............................................. 213
© Copyright 2026 Paperzz