Matrix Multiplication To Multiply matrix A by matrix B: •Multiply each Row in matrix A by each Column in matrix B •Multiply corresponding entries and then add the resulting products R1 R1 R2 A (1)(-1) + (2)(3) 1 2 3 4 (1)(1) + (2)(-2) B C1 C2 C3 1 1 2 3 2 3 (1)(2) + (2)(3) 5 -3 8 9 -5 18 = A.B = (3)(-1) + (4)(3) (3)(1) + (4)(-2) (3)(2) + (4)(3) We had: 2 elements or 2 columns 2 rows A 1 2 3 4 , 2 elements or 2 rows 3 columns B 1 3 1 Result: 2 rows by 3 columns 2 2 3 and A.B 5 3 8 9 5 18 A: has 2 rows, 2 columns or 2 x 2 B: has 2 rows, 3 columns or 2 x 3 By multiplying Rows from the first matrix by Columns in the second matrix: • The result will have: number of rows of A and number of columns of B. The result AB has 2 rows and 3 columns or 2 x 3. • The number of elements in per row of A, must be equal to the number of elements in per column in B, Or: Number of columns in the A = Number of Rows in B 2 = 2 For the following matrices, using the multiplication of Row by Column : A a) b) A.B: A.C: 1 1 5 2 1 1 2 , B 1 0 2 , C 1 2 0 4 Which of the following multiplication is possible If it is possible, find the dimension of the resulting matrix a) the number of elements per row in A (3 elements, 3 columns) the number of element per column in B (3 elements, 3 rows). b) The resulting matrix will be 2 row by 1 columns or 2 x 1 a) the number of elements per row in A (3 elements, 3 columns) the number of element per column in C (3 elements, 3 rows). b) The resulting matrix will be 2 rows by 2 columns or 2 x 2 B.C: C.A: 1 a) the number of elements per row in B (1 elements, 1 columns) the number of element per column in C (3 elements, 3 rows). a) the number of elements per row in C (2 elements, 3 columns) the number of element per column in A (2 elements, 2 rows). b) The resulting matrix will be 3 rows by 3 columns or 3 x 3 3 A.B A.C 5 3 21 5 4 B.C is Not Possible 0 1 11 C . A. 5 3 3 8 4 4 The following example will be helpful in Markov Chain section (Section 9.2). If: A 1 1 2 0 find A2, A3, A4 and A5 A2 A. A 1 1 1 1 1 1 . 2 0 2 0 2 2 A3 A2 . A 1 1 1 1 3 1 . 2 2 2 0 2 2 1 1 1 1 1 3 A A .A . 2 2 2 2 6 2 4 2 2 A5 A2 . A3 1 1 3 1 5 1 . 2 2 2 2 2 6
© Copyright 2025 Paperzz