A New Wavelet-based Expansion of a Random Process

Columbia International Publishing
Journal of Applied Mathematics and Statistics
(2016) Vol. 3 No. 3 pp. 137-148
doi:10.7726/jams.2016.1011
Research Article
A New Wavelet-based Expansion of a Random Process
Ievgen Turchyn 1*
Received: 28 July 2016; Published online: 1 October 2016
© The author 2016. Published with open access at www.uscip.us
Abstract
There has been obtained an expansion of a second-order stochastic process into a system of wavelet-based
functions. This expansion is used for simulation of a sub-Gaussian stochastic process with given accuracy and
reliability.
Keywords: Wavelets; Sub-Gaussian stochastic processes; Expansion
1. Introduction
One noteworthy class of expansions of random processes is formed by wavelet-based expansions.
Wavelet-based expansions with uncorrelated terms are especially important since they are
convenient for simulation and approximation of random processes.
Different wavelet-based expansions of stochastic processes were studied by Walter and Zhang
(1994), Meyer et al. (1999), Pipiras (2004), Zhao et al. (2004), Didier and Pipiras (2008).
Kozachenko and Turchyn (2008) obtained a theorem about a wavelet-based expansion for a wide
class of stochastic process. Namely, a centered second-order process 𝑋(𝑑) with the correlation
function
𝑅(𝑑, 𝑠) = ∫ ‍𝑒(𝑑, 𝑦)𝑒(𝑠, 𝑦)𝑑𝑦
ℝ
(𝑒(𝑑,β‹…) ∈ 𝐿2 (ℝ)) can be represented as the series
𝑋(𝑑) = βˆ‘π‘˜βˆˆβ„€ β€πœ‰0π‘˜ π‘Ž0π‘˜ (𝑑) + βˆ‘βˆž
𝑗=0 β€βˆ‘π‘˜βˆˆβ„€ β€πœ‚π‘—π‘˜ π‘π‘—π‘˜ (𝑑)
(1)
which converges in 𝐿2 (Ξ©) for any fixed 𝑑, where
______________________________________________________________________________________________________________________________
*Corresponding e-mail: [email protected]
1 Oles Honchar Dnipropetrovsk National University
137
Ievgen Turchyn / Journal of Applied Mathematics and Statistics
(2016) Vol. 3 No. 3 pp. 137-148
1
√2πœ‹
∫ ‍𝑒(𝑑, 𝑦)πœ™Μ‚0π‘˜ (𝑦)𝑑𝑦,β€β€β€β€π‘π‘—π‘˜ (𝑑) =
1
∫ ‍𝑒(𝑑, 𝑦)πœ“Μ‚π‘—π‘˜ (𝑦)𝑑𝑦,
√2πœ‹
ℝ
ℝ
Μ‚
πœ™(𝑦) is an 𝑓-wavelet, πœ“(𝑦) is the corresponding π‘š-wavelet, πœ™0π‘˜ (𝑦) and πœ“Μ‚π‘—π‘˜ (𝑦) are the Fourier
transforms of πœ™0π‘˜ (𝑦) = πœ™(𝑦 βˆ’ π‘˜) and πœ“π‘—π‘˜ (𝑦) = 2𝑗/2 πœ“(2𝑗 𝑦 βˆ’ π‘˜) correspondingly, πœ‰0π‘˜ and πœ‚π‘—π‘˜ are
uncorrelated random variables.
π‘Ž0π‘˜ (𝑑) =
The rate of convergence of this expansion in different functional spaces was studied by Turchyn
(2006), Kozachenko and Turchyn (2008), Turchyn (2011a), Turchyn (2011b). Conditions for
uniform convergence with probability 1 and in probability were obtained by Kozachenko and
Turchin (2009). A more general expansion of a random process (based on an arbitrary orthonormal
basis in 𝐿2 (𝐓)) was considered by Kozachenko et al. (2011).
We propose a new wavelet-type expansion of a second-order stochastic process based on a basis in
𝐿2 (ℝ2 ) which is built using wavelets. This expansion is similar to (1) but is more flexible since we
use two wavelets for this expansion instead of one wavelet in (1). We find the rate of convergence
of our expansion in 𝐿𝑝 ([0, 𝑇]) for a sub-Gaussian process in terms of simulation with given accuracy
and reliability. A model based on our expansion can be used for simulation of a Gaussian process.
2. Auxiliary Facts
Let πœ™ ∈ 𝐿2 (ℝ) be such a function that the following assumptions hold:
i)
βˆ‘ ‍|πœ™Μ‚(𝑦 + 2πœ‹π‘˜)|2 = 1‍‍‍‍a. e.,
π‘˜βˆˆβ„€
where πœ™Μ‚(𝑦) is the Fourier transform of πœ™,
πœ™Μ‚(𝑦) = ∫ ‍exp{βˆ’π‘–π‘¦π‘₯}πœ™(π‘₯)𝑑π‘₯;
ℝ
ii) there exists a function π‘š0 ∈ 𝐿2 ([0,2πœ‹]) such that π‘š0 (π‘₯) has period 2πœ‹ and almost everywhere
𝑦
𝑦
πœ™Μ‚(𝑦) = π‘š0 ( ) πœ™Μ‚ ( ) ;
2
2
iii) πœ™Μ‚(0) β‰  0 and the function πœ™Μ‚(𝑦) is continuos at 0.
The function πœ™(π‘₯) is called a 𝑓-wavelet. Let πœ“(π‘₯) be the inverse Fourier transform of the function
𝑦
𝑦
𝑦
πœ“Μ‚(𝑦) = π‘š0 ( + πœ‹) exp{βˆ’π‘– }β€πœ™Μ‚ ( ).
2
2
2
The function πœ“(π‘₯) is called a π‘š-wavelet. Let
πœ™π‘—π‘˜ (π‘₯) = 2𝑗/2 πœ™(2𝑗 π‘₯ βˆ’ π‘˜), πœ“π‘—π‘˜ (π‘₯) = 2𝑗/2 πœ“(2𝑗 π‘₯ βˆ’ π‘˜),β€β€β€β€π‘˜ ∈ β„€, 𝑗 = 0,1, …
138
Ievgen Turchyn / Journal of Applied Mathematics and Statistics
(2016) Vol. 3 No. 3 pp. 137-148
It is known that the family of functions {πœ™0π‘˜ , πœ“π‘—π‘˜ , 𝑗 = 0,1, … ; π‘˜ ∈ β„€} is an orthonormal basis in
𝐿2 (ℝ). Obviously the system {πœ™Μ‚0π‘˜ /√2πœ‹, πœ“Μ‚π‘—π‘˜ /√2πœ‹, 𝑗 = 0,1, … ; π‘˜ ∈ β„€} also is an orthonormal basis in
𝐿2 (ℝ) and therefore any function 𝑓 ∈ 𝐿2 (ℝ) can be represented as
𝑓(π‘₯) =
1
√2πœ‹
βˆ‘π‘˜βˆˆβ„€ β€π‘Ž0π‘˜ πœ™Μ‚0π‘˜ (π‘₯) +
1
√2πœ‹
Μ‚
βˆ‘βˆž
𝑗=0 β€βˆ‘π‘˜βˆˆβ„€ β€π‘π‘—π‘˜ πœ“π‘—π‘˜ (π‘₯),
(2)
where
π‘Ž0π‘˜ =
1
∫ ‍𝑓(π‘₯)πœ™Μ‚0π‘˜ (π‘₯)𝑑π‘₯,
√2πœ‹ ℝ
π‘π‘—π‘˜ =
1
∫ ‍𝑓(π‘₯)πœ“Μ‚π‘—π‘˜ (π‘₯)𝑑π‘₯,
√2πœ‹ ℝ
series (2) converges in the norm of the space 𝐿2 (ℝ).
More detailed information about wavelets is contained, for instance, in Härdle et al. (1998) or
Walter and Shen (2000).
Definition 2.1. A centered random variable πœ‰ is called sub-Gaussian if there exists such a constant
π‘Ž β‰₯ 0 that
Eexp{πœ†πœ‰} ≀ exp{πœ†2 π‘Ž2 /2},β€β€β€β€πœ† ∈ ℝ.
The class of all sub-Gaussian random variables on a standard probability space {Ξ©, ℬ, 𝑃} is a Banach
space with respect to the norm
𝜏(πœ‰) = inf{π‘Ž β‰₯ 0: Eexp{πœ†πœ‰} ≀ exp{πœ†2 π‘Ž2 /2}, πœ† ∈ ℝ}.
Definition 2.2 A sub-Gaussian random variable πœ‰ is called strictly sub-Gaussian if
𝜏(πœ‰) = (Eπœ‰ 2 )1/2 .
Example. A centered Gaussian random variable is strictly sub-Gaussian.
Definition 2.3. A stochastic process 𝑋 = {𝑋(𝑑), 𝑑 ∈ 𝑻} is called sub-Gaussian if all the random variables 𝑋(𝑑), 𝑑 ∈ 𝑻, are sub-Gaussian.
Example. Any centered Gaussian process is sub-Gaussian.
Details about sub-Gaussian random variables and processes can be found in Buldygin and
Kozachenko (2000).
3. A wavelet-based Expansion
Theorem 3.1. (Kozachenko et al. (2011)) Suppose that {𝑋(𝑑), 𝑑 ∈ 𝑻} is a centered second-order
random process with the correlation function 𝑅(𝑑, 𝑠) = E𝑋(𝑑)𝑋(𝑠), ‍(𝛬, ℬ𝛬 , πœ‡) is a measure space,
{π‘”π‘˜ (πœ†), π‘˜ ∈ β„€} is an orthonormal basis in 𝐿2 (𝛬, πœ‡) and 𝑒(𝑑,β‹…) ∈ 𝐿2 (𝛬, πœ‡), 𝑑 ∈ 𝑻.
The correlation function 𝑅(𝑑, 𝑠) of 𝑋(𝑑) can be represented as
139
Ievgen Turchyn / Journal of Applied Mathematics and Statistics
(2016) Vol. 3 No. 3 pp. 137-148
𝑅(𝑑, 𝑠) = βˆ«π›¬ ‍𝑒(𝑑, πœ†)𝑒(𝑠, πœ†)π‘‘πœ‡(πœ†),
(3)
if and only if the process 𝑋(𝑑) can be represented as
𝑋(𝑑) = βˆ‘π‘˜βˆˆβ„€ β€π‘Žπ‘˜ (𝑑)πœ‰π‘˜ ,‍‍‍𝑑 ∈ 𝑻,
(4)
where (4) converges in 𝐿2 (𝛺), 𝑑 ∈ 𝑻,
π‘Žπ‘˜ (𝑑) = βˆ«π›¬ ‍𝑒(𝑑, πœ†)π‘”π‘˜ (πœ†)π‘‘πœ‡(πœ†),
πœ‰π‘˜ are centered random variables such that Eπœ‰π‘˜ β€πœ‰π‘™ = π›Ώπ‘˜π‘™ .
The following result enables us to expand a second-order process in a random series with
uncorrelated terms which is built using two wavelets.
Theorem 3.2. Let 𝑋 = {𝑋(𝑑), 𝑑 ∈ [0, 𝑇′]} be a centered random process such that E|𝑋(𝑑)|2 < ∞ for all
𝑑 ∈ [0, 𝑇′]‍. Let 𝑅(𝑑, 𝑠) = E𝑋(𝑑)𝑋(𝑠) and there exists such a Borel function 𝑒(𝑑, 𝑦1 , 𝑦2 ), 𝑦𝑖 ∈ ℝ,‍
𝑑 ∈ [0, 𝑇′], that βˆ«β„2 ‍|𝑒(𝑑, 𝑦1 , 𝑦2 )|2 𝑑𝑦1 𝑑𝑦2 < ∞ (𝑖 = 1,2)‍for all 𝑑 ∈ [0, 𝑇′] and
𝑅(𝑑, 𝑠) = ∫ ‍𝑒(𝑑, 𝑦1 , 𝑦2 )𝑒(𝑠, 𝑦1 , 𝑦2 )𝑑𝑦1 𝑑𝑦2 ‍.‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍(5)
ℝ2
Let πœ™ (1) (π‘₯), πœ“ (1) (π‘₯) and πœ™ (2) (π‘₯), πœ“ (2) (π‘₯) be two pairs of a 𝑓-wavelet and the corresponding π‘š-wavelet. Then the process 𝑋(𝑑) can be represented as the following series which converges for any
𝑑 ∈ [0, 𝑇′] in 𝐿2 (𝛺):
∞
𝑋(𝑑) = βˆ‘ ‍ βˆ‘ β€π‘Ž0,π‘˜1 ,π‘˜2 (𝑑)πœ‰0,π‘˜1 ,π‘˜2 + βˆ‘ β€βˆ‘ β€βˆ‘ β€π‘π‘˜;𝑗,𝑙 (𝑑)πœ‚π‘˜;𝑗,𝑙
π‘˜1 βˆˆβ„€ π‘˜2 βˆˆβ„€
∞
π‘˜βˆˆβ„€ 𝑗=0 π‘™βˆˆβ„€
∞
∞
+ βˆ‘ β€βˆ‘ β€βˆ‘ β€π‘‘π‘˜;𝑗,𝑙 (𝑑)πœπ‘˜;𝑗,𝑙 + βˆ‘ ‍ βˆ‘ ‍ βˆ‘ ‍ βˆ‘ ‍𝑒𝑗1 ,𝑙1 ;𝑗2 ,𝑙2 (𝑑)πœ’π‘—1 ,𝑙1 ;𝑗2 ,𝑙2 ,‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍(6)
π‘˜βˆˆβ„€ 𝑗=0 π‘™βˆˆβ„€
𝑗1 =0 𝑙1 βˆˆβ„€ 𝑗2 =0 𝑙2 βˆˆβ„€
where
π‘Ž0,π‘˜1 ,π‘˜2 (𝑑) =
1
(1)
(2)
∫ ‍𝑒(𝑑, 𝑦1 , 𝑦2 )πœ™Μ‚0,π‘˜ (𝑦1 )β€πœ™Μ‚0,π‘˜ (𝑦2 )𝑑𝑦1 𝑑𝑦2 ,‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍(7)
1
2
2πœ‹ ℝ2
π‘π‘˜;𝑗,𝑙 (𝑑) =
1
(1)
(2)
∫ ‍𝑒(𝑑, 𝑦1 , 𝑦2 )πœ™Μ‚0,π‘˜ (𝑦1 )β€πœ“Μ‚π‘—,𝑙 (𝑦2 )𝑑𝑦1 𝑑𝑦2 ,‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍(8)
2πœ‹ ℝ2
π‘‘π‘˜;𝑗,𝑙 (𝑑) =
1
(1)
(2)
∫ ‍𝑒(𝑑, 𝑦1 , 𝑦2 )πœ“Μ‚π‘—,𝑙 (𝑦1 )β€πœ™Μ‚0,π‘˜ (𝑦2 )𝑑𝑦1 𝑑𝑦2 ,‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍(9)
2πœ‹ ℝ2
𝑒𝑗1 ,𝑙1 ;𝑗2 ,𝑙2 (𝑑) =
1
(1)
(2)
∫ ‍𝑒(𝑑, 𝑦1 , 𝑦2 )πœ“Μ‚π‘— ,𝑙 (𝑦1 )β€πœ“Μ‚π‘— ,𝑙 (𝑦2 )𝑑𝑦1 𝑑𝑦2 ,‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍(10)
1
1
2 2
2πœ‹ ℝ2
all the random variables πœ‰0,π‘˜1 ,π‘˜2 , πœ‚π‘˜;𝑗,𝑙 , πœπ‘˜;𝑗,𝑙 , πœ’π‘—1 ,𝑙1 ;𝑗2 ,𝑙2 are centered and uncorrelated,
E|πœ‰0,π‘˜1 ,π‘˜2 |2 = E|πœ‚π‘˜;𝑗,𝑙 |2 = E|πœπ‘˜;𝑗,𝑙 |2 = E|πœ’π‘—1 ,𝑙1 ;𝑗2 ,𝑙2 |2 = 1.
140
Ievgen Turchyn / Journal of Applied Mathematics and Statistics
(2016) Vol. 3 No. 3 pp. 137-148
Proof. It is enough to apply Theorem 3.1 to the process 𝑋(𝑑) and the orthonormal basis β„± defined as
β„± = β„±1 βˆͺ β„±2 βˆͺ β„±3 βˆͺ β„±4 , where
(1)
(2)
β„±1 = πœ™Μ‚0,π‘˜1 (𝑦1 )πœ™Μ‚0,π‘˜2 (𝑦2 )/(2πœ‹), π‘˜1 , π‘˜2 ∈ β„€,
(1)
(2)
β„±2 = πœ™Μ‚0,π‘˜1 (𝑦1 )πœ“Μ‚π‘—2 ,π‘˜2 (𝑦2 )/(2πœ‹), π‘˜1 , π‘˜2 ∈ β„€, 𝑗2 = 0,1, …,
(1)
(2)
β„±3 = πœ“Μ‚π‘—1 ,π‘˜1 (𝑦1 )πœ™Μ‚0,π‘˜2 (𝑦2 )/(2πœ‹), π‘˜1 , π‘˜2 ∈ β„€, 𝑗1 = 0,1, …,
(1)
(2)
β„±4 = πœ“Μ‚π‘—1 ,π‘˜1 (𝑦1 )πœ“Μ‚π‘—2 ,π‘˜2 (𝑦2 )/(2πœ‹), π‘˜1 , π‘˜2 ∈ β„€, 𝑗1 , 𝑗2 = 0,1, …
Remark. We can generalize expansion (6) if we consider a centered random field 𝑋 = {𝑋(𝑑), 𝑑 ∈ 𝐓}
(where 𝐓 βŠ‚ ℝ𝑑 ) which correlation function can be represented as
𝑅(𝑑, 𝑠) = ∫ ‍𝑒(𝑑, 𝑦1 , 𝑦2 , … , 𝑦𝑛 )𝑒(𝑠, 𝑦1 , 𝑦2 , … , 𝑦𝑛 )𝑑𝑦1 𝑑𝑦2 … 𝑑𝑦𝑛 ,‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍(11)
ℝ𝑛
𝑒(𝑑,β‹…,β‹…, … ,β‹…) ∈ 𝐿2 (ℝ𝑛 ), and apply Theorem 3.1 to the orthonormal basis in 𝐿2 (ℝ𝑛 ) which is the
(𝑖)
(𝑖)
tensor product of orthonormal bases {πœ™Μ‚0,π‘˜ (π‘₯)/√2πœ‹, π‘˜ ∈ β„€; πœ“Μ‚π‘—,𝑙 (π‘₯)/√2πœ‹, 𝑗 = 0,1, … ; π‘˜, 𝑙 ∈ β„€} ,
𝑖 = 1,2, … , 𝑛 (πœ™ (𝑖) (π‘₯) and πœ“ (𝑖) (π‘₯) are pairs of a 𝑓-wavelet and the corresponding π‘š-wavelet).
Let us consider the case 𝑑 = 𝑛. If 𝑋 = {𝑋(𝑑), 𝑑 ∈ 𝐓 βŠ‚ ℝ𝑑 } is a centered stationary random field
which has the spectral density 𝑓(𝑦), 𝑦 ∈ ℝ𝑑 , then its correlation fucntion 𝑅(𝑑, 𝑠) can be represented
as (11) if we set
𝑒(𝑑, 𝑦) = βˆšπ‘“(𝑦)exp{βˆ’π‘–(𝑑, 𝑦)},
where 𝑑 = (𝑑1 , 𝑑2 , … , 𝑑𝑑 ), 𝑦 = (𝑦1 , 𝑦2 , … , 𝑦𝑑 ) . So 𝑋(𝑑) can be expanded into a series of types
(4)‍and‍(6).
4. Inequalities for the Coefficients
Lemma 4.1. Let 𝑋(𝑑) be a stochastic process which satisfies the conditions of Theorem 3.2 together
with the f-wavelets πœ™ (1) (π‘₯), πœ™ (2) (π‘₯) and the corresponding m-wavelets πœ“ (1) (π‘₯), πœ“ (2) (π‘₯), the function
𝑒(𝑑, 𝑦1 , 𝑦2 ) from (5) is such that
|𝑒(𝑑, 𝑦1 , 𝑦2 )| ≀ 𝑣1 (𝑑, 𝑦1 )‍𝑣2 (𝑑, 𝑦2 ),
(12)
(𝑖)
where 𝑣𝑖 (𝑑,β‹…) ∈ 𝐿2 (ℝ)‍(𝑖 = 1,2). Assume that πœ™Μ‚ (𝑦) are absolutely continuous, 𝑣𝑖 (𝑑, 𝑦) are absolutely
continuous with respect to 𝑦 for any fixed 𝑑, there exist πœ•π‘£π‘– (𝑑, 𝑦)/πœ•π‘¦, π‘‘πœ™Μ‚ (𝑖) (𝑦)/𝑑𝑦, π‘‘πœ“Μ‚ (𝑖) (𝑦)/𝑑𝑦 and
π‘‘πœ“Μ‚ (𝑖) (𝑦)
|
| ≀ 𝐢𝑖 ,
𝑑𝑦
|𝑣𝑖 (𝑑, 𝑦)| ≀ 𝐻𝑖 (𝑑)β€π‘£π‘–βˆ— (𝑦),
βˆ‚π‘£π‘– (𝑑, 𝑦)
|
| ≀ 𝐺𝑖 (𝑑)β€π‘£π‘–βˆ—βˆ— (𝑦),
βˆ‚π‘¦
141
Ievgen Turchyn / Journal of Applied Mathematics and Statistics
(2016) Vol. 3 No. 3 pp. 137-148
sup 𝐻𝑖 (𝑑) < ∞,
π‘‘βˆˆ[0,𝑇]
sup 𝐺𝑖 (𝑑) < ∞,
π‘‘βˆˆ[0,𝑇]
∫ β€π‘£π‘–βˆ— (𝑦)|𝑦|𝑑𝑦 < ∞,
ℝ
∫ β€π‘£π‘–βˆ— (𝑦)𝑑𝑦 < ∞,
ℝ
∫ β€π‘£π‘–βˆ— (𝑦) |
ℝ
π‘‘πœ™Μ‚ (𝑖) (𝑦)
| 𝑑𝑦 < ∞,
𝑑𝑦
∫ β€π‘£π‘–βˆ— (𝑦)|πœ™Μ‚ (𝑖) (𝑦)|𝑑𝑦 < ∞,
ℝ
∫ β€π‘£π‘–βˆ—βˆ— (𝑦)|𝑦|𝑑𝑦 < ∞,
ℝ
∫ β€π‘£π‘–βˆ—βˆ— (𝑦)|πœ™Μ‚ (𝑖) (𝑦)|𝑑𝑦 < ∞,
ℝ
lim 𝑣𝑖 (𝑑, 𝑦)|πœ™Μ‚ (𝑖) (𝑦)| = 0,‍‍‍‍𝑑 ∈ ℝ,
|𝑦|β†’βˆž
lim 𝑣𝑖 (𝑑, 𝑦)|πœ“Μ‚ (𝑖) (𝑦/2𝑗 )| = 0,‍‍‍‍𝑑 ∈ ℝ,
|𝑦|β†’βˆž
𝑗 = 0,1, …,
𝑖 = 1,2. Define
(𝑖)
𝑆1
(𝑖)
=
π‘‘πœ™Μ‚ (𝑖) (𝑦)
βˆ—
∫ ‍𝑣𝑖 (𝑦) |
| 𝑑𝑦,
𝑑𝑦
√2πœ‹ ℝ
𝑆2 =
1
1
√2πœ‹
(𝑖)
𝑄1 =
∫ β€π‘£π‘–βˆ—βˆ— (𝑦)|πœ™Μ‚ (𝑖) (𝑦)|𝑑𝑦,
ℝ
𝐢𝑖
∫ β€π‘£π‘–βˆ— (𝑦)𝑑𝑦,
√2πœ‹ ℝ
𝐢𝑖
(𝑖)
∫ β€π‘£π‘–βˆ—βˆ— (𝑦)|𝑦|𝑑𝑦,
𝑄2 =
√2πœ‹ ℝ
1
∫ β€π‘£π‘–βˆ— (𝑦)|πœ™Μ‚ (𝑖) (𝑦)|𝑑𝑦,
𝐿(𝑖) =
√2πœ‹ ℝ
𝐢𝑖
∫ β€π‘£π‘–βˆ— (𝑦)|𝑦|𝑑𝑦,
π‘Š (𝑖) =
√2πœ‹ ℝ
𝑖 = 1,2. Then the following inequalities hold:
|π‘Ž0,π‘˜1 ,π‘˜2 (𝑑)| ≀
π΄π‘Ž,π‘Ž (𝑑)
,β€β€β€β€π‘˜1 β‰  0, π‘˜2 β‰  0,‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍(13)
|π‘˜1 ||π‘˜2 |
142
Ievgen Turchyn / Journal of Applied Mathematics and Statistics
(2016) Vol. 3 No. 3 pp. 137-148
π΄π‘Ž,0 (𝑑)
,β€β€β€β€π‘˜1 β‰  0,‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍(14)
|π‘˜1 |
𝐴0,π‘Ž (𝑑)
|π‘Ž0,0,π‘˜2 (𝑑)| ≀
,β€β€β€β€π‘˜2 β‰  0,‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍(15)
|π‘˜2 |
‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍|π‘Ž0,0,0 (𝑑)| ≀ 𝐴0,0 (𝑑),‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍(16)
|π‘Ž0,π‘˜1 ,0 (𝑑)| ≀
π΅π‘Ž,𝑏 (𝑑)
,β€β€β€β€π‘˜ β‰  0, 𝑙 β‰  0,‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍(17)
2𝑗/2 |π‘˜||𝑙|
|π‘π‘˜;𝑗,𝑙 (𝑑)| ≀
|𝑏0;𝑗,𝑙 (𝑑)| ≀
𝐡0,𝑏 (𝑑)
,‍‍‍‍𝑙 β‰  0,‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍(18)
2𝑗/2 |𝑙|
|π‘π‘˜;𝑗,0 (𝑑)| ≀
π΅π‘Ž,0 (𝑑)
,β€β€β€β€π‘˜ β‰  0,‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍(19)
|π‘˜|23𝑗/2
𝐡0,0 (𝑑)
,‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍(20)
23𝑗/2
π·π‘Ž,𝑏 (𝑑)
|π‘‘π‘˜;𝑗,𝑙 (𝑑)| ≀ 𝑗/2
,β€β€β€β€π‘˜ β‰  0, 𝑙 β‰  0,‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍(21)
2 |π‘˜||𝑙|
|𝑏0;𝑗,0 (𝑑)| ≀
𝐷0,𝑏 (𝑑)
,‍‍‍‍𝑙 β‰  0,‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍(22)
2𝑗/2 |𝑙|
π·π‘Ž,0 (𝑑)
|π‘‘π‘˜;𝑗,0 (𝑑)| ≀
,β€β€β€β€π‘˜ β‰  0,‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍(23)
|π‘˜|23𝑗/2
|𝑑0;𝑗,𝑙 (𝑑)| ≀
|𝑑0;𝑗,0 (𝑑)| ≀
|𝑒𝑗1 ,𝑙1 ;𝑗2 ,𝑙2 (𝑑)| ≀
𝐷0,0 (𝑑)
,‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍(24)
23𝑗/2
𝐸𝑏,𝑏 (𝑑)
,‍‍‍‍𝑙1
𝑗
/2
2 1 ‍2𝑗2 /2 ‍|𝑙1 ||𝑙2 |
β‰  0, 𝑙2 β‰  0,‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍(25)
|𝑒𝑗1 ,0;𝑗2 ,𝑙2 (𝑑)| ≀
𝐸0,𝑏 (𝑑)
,‍‍‍‍𝑙2 β‰  0,‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍(26)
23𝑗1 /2 ‍2𝑗2 /2 ‍|𝑙2 |
|𝑒𝑗1 ,𝑙1 ;𝑗2 ,0 (𝑑)| ≀
𝐸𝑏,0 (𝑑)
,‍‍‍‍𝑙1
𝑗
/2
1
2
‍23𝑗2 /2 ‍|𝑙1 |
|𝑒𝑗1 ,0;𝑗2 ,0 (𝑑)| ≀
β‰  0,‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍(27)
𝐸0,0 (𝑑)
,‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍(28)
3𝑗
2 1 /2 ‍23𝑗2 /2
where
(1)
(1)
(2)
(2)
π΄π‘Ž,π‘Ž (𝑑) = (𝑆1 𝐻1 (𝑑) + 𝑆2 𝐺1 (𝑑))(𝑆1 𝐻2 (𝑑) + 𝑆2 𝐺2 (𝑑)),
(2)
(2)
(1)
(1)
𝐴0,π‘Ž (𝑑) = (𝑆1 𝐻2 (𝑑) + 𝑆2 𝐺2 (𝑑))𝐿(1) 𝐻1 (𝑑),
π΄π‘Ž,0 (𝑑) = (𝑆1 𝐻1 (𝑑) + 𝑆2 𝐺1 (𝑑))𝐿(2) 𝐻2 (𝑑),
𝐴0,0 (𝑑) = 𝐿(1) 𝐿(2) 𝐻1 (𝑑)𝐻2 (𝑑),
(1)
(1)
(2)
(2)
π΅π‘Ž,𝑏 (𝑑) = (𝑆1 𝐻1 (𝑑) + 𝑆2 𝐺1 (𝑑))(𝑄1 𝐻2 (𝑑) + 𝑄2 𝐺2 (𝑑)),
143
Ievgen Turchyn / Journal of Applied Mathematics and Statistics
(2016) Vol. 3 No. 3 pp. 137-148
(2)
(2)
𝐡0,𝑏 (𝑑) = 𝐿(1) 𝐻1 (𝑑)(𝑄1 𝐻2 (𝑑) + 𝑄2 𝐺2 (𝑑)),
(1)
(1)
π΅π‘Ž,0 (𝑑) = π‘Š (2) 𝐻2 (𝑑)(𝑆1 𝐻1 (𝑑) + 𝑆2 𝐺1 (𝑑)),
𝐡0,0 (𝑑) = 𝐿(1) π‘Š (2) 𝐻1 (𝑑)𝐻2 (𝑑),
(2)
(2)
(1)
(1)
π·π‘Ž,𝑏 (𝑑) = (𝑆1 𝐻2 (𝑑) + 𝑆2 𝐺2 (𝑑))(𝑄1 𝐻1 (𝑑) + 𝑄2 𝐺1 (𝑑)),
(1)
(1)
𝐷0,𝑏 (𝑑) = 𝐿(2) 𝐻2 (𝑑)(𝑄1 𝐻1 (𝑑) + 𝑄2 𝐺1 (𝑑)),
(2)
(2)
π·π‘Ž,0 (𝑑) = π‘Š (1) 𝐻1 (𝑑)(𝑆1 𝐻2 (𝑑) + 𝑆2 𝐺2 (𝑑)),
𝐷0,0 (𝑑) = 𝐿(2) π‘Š (1) 𝐻1 (𝑑)𝐻2 (𝑑),
(1)
(1)
(2)
(2)
𝐸𝑏,𝑏 (𝑑) = (𝑄1 𝐻1 (𝑑) + 𝑄2 𝐺1 (𝑑))(𝑄1 𝐻2 (𝑑) + 𝑄2 𝐺2 (𝑑)),
(2)
(2)
(1)
(1)
𝐸0,𝑏 (𝑑) = π‘Š (1) 𝐻1 (𝑑)(𝑄1 𝐻2 (𝑑) + 𝑄2 𝐺2 (𝑑)),
𝐸𝑏,0 (𝑑) = π‘Š (2) 𝐻2 (𝑑)(𝑄1 𝐻1 (𝑑) + 𝑄2 𝐺1 (𝑑)),
𝐸0,0 (𝑑) = π‘Š (1) π‘Š (2) 𝐻1 (𝑑)𝐻2 (𝑑).
Proof. Let us prove, for instance, inequality (13). We have
|π‘Ž0,π‘˜1 ,π‘˜2 (𝑑)| ≀
1
(1)
(2)
|∫ ‍𝑣 (𝑑, 𝑦1 )πœ™Μ‚0,π‘˜ (𝑦1 )𝑑𝑦1 |‍‍|∫ ‍𝑣2 (𝑑, 𝑦2 )πœ™Μ‚0,π‘˜ (𝑦2 )𝑑𝑦2 |.
1
2
2πœ‹ ℝ 1
ℝ
Estimating the integrals in the right-hand side by means of Lemma 1 from Turchyn (2011a), we
obtain (13).
Inequalities (14)–(28) are proved in a similar way.
5. Simulation
Expansion (6) may be used for simulation of stochastic processes.
If a process 𝑋(𝑑) satisfies the conditions of Theorem 3.2, then we can consider as a model of 𝑋(𝑑)
the process
π‘Ž
π‘Ž
𝑏
𝑏
𝑏
π‘˜ βˆ’1
π‘˜ βˆ’1
𝑗 βˆ’1
βˆ’1
𝑙 βˆ’1
𝑋̂(𝑑) = βˆ‘π‘˜1 =βˆ’(π‘˜ π‘Ž βˆ’1) β€β€β€βˆ‘π‘˜2 =βˆ’(π‘˜ π‘Ž βˆ’1) β€π‘Ž0,π‘˜1 ,π‘˜2 (𝑑)πœ‰0,π‘˜1 ,π‘˜2 + βˆ‘π‘˜π‘˜=βˆ’(π‘˜
𝑏 βˆ’1) β€β€β€βˆ‘π‘—=0 β€β€β€βˆ‘π‘™=βˆ’(𝑙 𝑏 βˆ’1) β€π‘π‘˜;𝑗,𝑙 (𝑑)πœ‚π‘˜;𝑗,𝑙
1
1
𝑗 𝑑 βˆ’1
𝑑
2
2
𝑑
βˆ’1
𝑙 βˆ’1
+ βˆ‘π‘˜π‘˜=βˆ’(π‘˜
𝑑 βˆ’1) β€β€β€βˆ‘π‘—=0 β€β€β€βˆ‘π‘™=βˆ’(𝑙 𝑑 βˆ’1) β€π‘‘π‘˜;𝑗,𝑙 (𝑑)πœπ‘˜;𝑗,𝑙
𝑗 𝑒 βˆ’1
𝑙 𝑒 βˆ’1
𝑗 𝑒 βˆ’1
𝑙 𝑒 βˆ’1
+ βˆ‘π‘—11 =0 β€β€β€βˆ‘π‘™1 =βˆ’(𝑙𝑒 βˆ’1) β€β€β€βˆ‘π‘—22 =0 β€β€β€βˆ‘π‘™2 =βˆ’(𝑙𝑒 βˆ’1) ‍𝑒𝑗1 ,𝑙1 ;𝑗2 ,𝑙2 (𝑑)πœ’π‘—1 ,𝑙1 ;𝑗2 ,𝑙2 ‍,
1
1
2
2
(30)
where πœ‰0,π‘˜1 ,π‘˜2 , πœ‚π‘˜;𝑗,𝑙 , πœπ‘˜;𝑗,𝑙 , πœ’π‘—1 ,𝑙1 ;𝑗2 ,𝑙2 are the random variables from expansion (6), the functions
π‘Ž0,π‘˜1 ,π‘˜2 (𝑑), π‘π‘˜;𝑗,𝑙 (𝑑), π‘‘π‘˜;𝑗,𝑙 (𝑑), 𝑒𝑗1 ,𝑙1 ;𝑗2 ,𝑙2 (𝑑) are calculated using (7)–(10), the parameters
π‘˜1π‘Ž , π‘˜2π‘Ž , π‘˜π‘ , 𝑗𝑏 , 𝑙 𝑏 , π‘˜ 𝑑 , 𝑗 𝑑 , 𝑙 𝑑 , 𝑗1𝑒 , 𝑙1𝑒 , 𝑗2𝑒 , 𝑙2𝑒 are strictly greater than 1.
144
Ievgen Turchyn / Journal of Applied Mathematics and Statistics
(2016) Vol. 3 No. 3 pp. 137-148
Remark. If 𝑋(𝑑) is a Gaussian process then πœ‰0,π‘˜1 ,π‘˜2 , πœ‚π‘˜;𝑗,𝑙 , πœπ‘˜;𝑗,𝑙 , πœ’π‘—1 ,𝑙1 ;𝑗2 ,𝑙2 in (30) are independent
random variables with distribution 𝑁(0,1) and the model 𝑋̂(𝑑) can be used for computer simulation
of 𝑋(𝑑).
Definition 5.1. We say that the model 𝑋̂(𝑑) approximates a process 𝑋(𝑑) with given reliability 1 βˆ’ 𝛿
(0 < 𝛿 < 1) and accuracy πœ€ > 0 in 𝐿𝑝 ([0, 𝑇]) if
1/𝑝
𝑇
𝑃 {(∫ ‍|𝑋(𝑑) βˆ’ 𝑋̂(𝑑)|𝑝 𝑑𝑑)
> πœ€} ≀ 𝛿.
0
Remark. We will consider only real-valued 𝑓-wavelets and π‘š-wavelets below.
Definition 5.2. We say that the condition R1 holds for a stochastic process 𝑋(𝑑) if it satisfies the
conditions of Theorem 3.2, 𝑒(𝑑,β‹…,β‹…) ∈ 𝐿1 (ℝ2 ) ∩ 𝐿2 (ℝ2 ) and inverse Fourier transform 𝑒̃(𝑑, 𝑦1 , 𝑦2 ) of the
function 𝑒(𝑑, 𝑦1 , 𝑦2 ) with respect to (𝑦1 , 𝑦2 ) is a real-valued function.
Theorem 5.1. (Turchyn (2011a)) Suppose that 𝑋(𝑑) is a sub-Gaussian random process that satisfies
condition R1, 𝑋̂(𝑑) is the model of the process defined by (30), random variables πœ‰0,π‘˜1 ,π‘˜2 , πœ‚π‘˜;𝑗,𝑙 , πœπ‘˜;𝑗,𝑙 ,
πœ’π‘—1 ,𝑙1 ;𝑗2 ,𝑙2 in expansion (6) of 𝑋(𝑑) are independent and strictly sub-Gaussian, 𝑝 β‰₯ 1, 𝛿 ∈ (0; 1), πœ€ > 0,
𝑇 ∈ (0, 𝑇′).
If
sup E|𝑋(𝑑) βˆ’ 𝑋̂(𝑑)|2 ≀ min {
π‘‘βˆˆ[0,𝑇]
πœ€2
πœ€2
,‍‍‍
},
2𝑇 2/𝑝 ln(2/𝛿) 𝑝𝑇 2/𝑝
then the model 𝑋̂(𝑑) approximates the process 𝑋(𝑑) with reliability 1 βˆ’ 𝛿 and accuracy πœ€ in 𝐿𝑝 ([0, 𝑇]).
The following theorem is the main result of the article.
Theorem 5.2 Suppose that a sub-Gaussian random process 𝑋 = {𝑋(𝑑), 𝑑 ∈ [0, 𝑇′]} satisfies the
condition R1 and the conditions of Lemma 4.1 together with 𝑓-wavelets πœ™ (1) (π‘₯), πœ™ (2) (π‘₯) and the
corresponding π‘š -wavelets πœ“ (1) (π‘₯), πœ“ (2) (π‘₯) , the random variables πœ‰0,π‘˜1 ,π‘˜2 , πœ‚π‘˜;𝑗,𝑙 , πœπ‘˜;𝑗,𝑙 , πœ’π‘—1 ,𝑙1 ;𝑗2 ,𝑙2 in
expansion (6) of 𝑋(𝑑) are independent and strictly sub-Gaussian, 𝑝 β‰₯ 1, 𝑇 ∈ (0, 𝑇′), 𝛿 ∈ (0; 1), πœ€ > 0.
Denote by π΄Μƒπ‘Ž,0 (𝑇), … , 𝐸̃0,𝑏 (𝑇) the suprema of the functions π΄π‘Ž,0 (𝑑), … , 𝐸0,𝑏 (𝑑) correspondingly on
[0, 𝑇] (where π΄π‘Ž,0 (𝑑), … , 𝐸0,𝑏 (𝑑) are defined in Lemma 4.1),
πœ€2
πœ€2
πœ€1 = min { 2/𝑝
, 2/𝑝 }.
2𝑇 ln(2/𝛿) 𝑝𝑇
If
π‘˜1π‘Ž β‰₯ 1 + (16(π΄Μƒπ‘Ž,0 (𝑇))2 + 64(π΄Μƒπ‘Ž,π‘Ž (𝑇))2 )/πœ€1 ,
π‘˜2π‘Ž β‰₯ 1 + (16(𝐴̃0,π‘Ž (𝑇))2 + 64(π΄Μƒπ‘Ž,π‘Ž (𝑇))2 )/πœ€1 ,
π‘˜π‘ β‰₯ 1 + ((256/7)(π΅Μƒπ‘Ž,0 (𝑇))2 + 256(π΅Μƒπ‘Ž,𝑏 (𝑇))2 )/πœ€1 ,
145
Ievgen Turchyn / Journal of Applied Mathematics and Statistics
(2016) Vol. 3 No. 3 pp. 137-148
𝑙 𝑏 β‰₯ 1 + (256(π΅Μƒπ‘Ž,𝑏 (𝑇))2 + 64(𝐡̃0,𝑏 (𝑇))2 )/πœ€1 ,
𝑗𝑏 β‰₯ max {1 + log 2
64(𝐡̃0,𝑏 (𝑇))2 + 256(π΅Μƒπ‘Ž,𝑏 (𝑇))2
64(π΅Μƒπ‘Ž,0 (𝑇))2 + 16(𝐡̃0,0 (𝑇))2
, 1 + log 8
},
πœ€1
7πœ€1
Μƒπ‘Ž,0 (𝑇))2 + 256(𝐷
Μƒπ‘Ž,𝑏 (𝑇))2 )/πœ€1 ,
π‘˜ 𝑑 β‰₯ 1 + ((256/7)(𝐷
Μƒπ‘Ž,𝑏 (𝑇))2 + 64(𝐷
Μƒ0,𝑏 (𝑇))2 )/πœ€1 ,
𝑙 𝑑 β‰₯ 1 + (256(𝐷
𝑗 𝑑 β‰₯ max {1 + log 2
Μƒ0,𝑏 (𝑇))2 + 256(𝐷
Μƒπ‘Ž,𝑏 (𝑇))2
Μƒπ‘Ž,0 (𝑇))2 + 16(𝐷
Μƒ0,0 (𝑇))2
64(𝐷
64(𝐷
, 1 + log 8
},
πœ€1
7πœ€1
𝑗1𝑒 β‰₯ max{1 + log 2
768(𝐸̃𝑏,𝑏 (𝑇))2 + 768(𝐸̃𝑏,0 (𝑇))2 /7
24(𝐸̃0,𝑏 (𝑇))2 /7 + 24(𝐸̃0,0 (𝑇))2 /49
, 2 + log 8
},
πœ€1
πœ€1
𝑗2𝑒 β‰₯ max{1 + log 2
768(𝐸̃𝑏,𝑏 (𝑇))2 + 768(𝐸̃0,𝑏 (𝑇))2 /7
24(𝐸̃𝑏,0 (𝑇))2 /7 + 24(𝐸̃0,0 (𝑇))2 /49
, 2 + log 8
},
πœ€1
πœ€1
𝑙1𝑒 β‰₯ 1 +
768(𝐸̃𝑏,𝑏 (𝑇))2 + 768(𝐸̃𝑏,0 (𝑇))2 /7
,
πœ€1
𝑙2𝑒 β‰₯ 1 +
768(𝐸̃𝑏,𝑏 (𝑇))2 + 768(𝐸̃0,𝑏 (𝑇))2 /7
,
πœ€1
then the model 𝑋̂(𝑑) defined by (30) approximates the process 𝑋(𝑑) with reliability 1 βˆ’ 𝛿 and
accuracy πœ€ in 𝐿𝑝 ([0, 𝑇]).
Proof. It is easy to see using Lemma 4.1 that under the assumptions of the theorem
π‘Ž
π‘˜ βˆ’1
E|𝑋(𝑑) βˆ’ 𝑋̂(𝑑)|2 = βˆ‘π‘˜1 :|π‘˜1 |β‰₯π‘˜1π‘Ž β€β€β€βˆ‘π‘˜2 βˆˆβ„€ ‍|π‘Ž0,π‘˜1 ,π‘˜2 (𝑑)|2 + βˆ‘π‘˜1 =βˆ’(π‘˜ π‘Ž βˆ’1) β€β€β€βˆ‘π‘˜2 :|π‘˜2 |β‰₯π‘˜2π‘Ž ‍|π‘Ž0,π‘˜1 ,π‘˜2 (𝑑)|2
1
2
+ βˆ‘π‘˜:|π‘˜|β‰₯π‘˜ 𝑏 β€β€β€βˆ‘βˆž
𝑗=0 β€β€β€βˆ‘π‘™βˆˆβ„€ ‍|π‘π‘˜;𝑗,𝑙 (𝑑)|
+
1
𝑏 βˆ’1
∞
2
βˆ‘π‘˜π‘˜=βˆ’(π‘˜
𝑏 βˆ’1) β€β€β€βˆ‘π‘—=𝑗 𝑏 β€β€β€βˆ‘π‘™βˆˆβ„€ ‍|π‘π‘˜;𝑗,𝑙 (𝑑)|
𝑗 𝑏 βˆ’1
𝑏
βˆ’1
∞
2
2
+ βˆ‘π‘˜π‘˜=βˆ’(π‘˜
𝑏 βˆ’1) β€β€β€βˆ‘π‘—=0 β€β€β€βˆ‘π‘™:|𝑙|β‰₯𝑙 𝑏 ‍|π‘π‘˜;𝑗,𝑙 (𝑑)| + βˆ‘π‘˜:|π‘˜|β‰₯π‘˜ 𝑑 β€β€β€βˆ‘π‘—=0 β€β€β€βˆ‘π‘™βˆˆβ„€ ‍|π‘‘π‘˜;𝑗,𝑙 (𝑑)|
𝑑
𝑗 𝑑 βˆ’1
𝑑
βˆ’1
∞
π‘˜ βˆ’1
2
2
+ βˆ‘π‘˜π‘˜=βˆ’(π‘˜
𝑑 βˆ’1) β€β€β€βˆ‘π‘—=𝑗 𝑑 β€β€β€βˆ‘π‘™βˆˆβ„€ ‍|π‘‘π‘˜;𝑗,𝑙 (𝑑)| ‍ + ‍ βˆ‘π‘˜=βˆ’(π‘˜ 𝑑 βˆ’1) β€β€β€βˆ‘π‘—=0 β€β€β€βˆ‘π‘™:|𝑙|β‰₯𝑙 𝑑 ‍|π‘‘π‘˜;𝑗,𝑙 (𝑑)|
𝑗 𝑒 βˆ’1
∞
∞
1
2
2
+ βˆ‘βˆž
𝑗1 =𝑗1𝑒 β€βˆ‘π‘—2 =0 β€β€β€βˆ‘π‘™1 βˆˆβ„€ β€β€β€βˆ‘π‘™2 βˆˆβ„€ ‍|𝑒𝑗1 ,𝑙1 ;𝑗2 ,𝑙2 (𝑑)| + βˆ‘π‘—1 =0 β€βˆ‘π‘—2 =𝑗2𝑒 β€β€β€βˆ‘π‘™1 βˆˆβ„€ β€β€β€βˆ‘π‘™2 βˆˆβ„€ ‍|𝑒𝑗1 ,𝑙1 ;𝑗2 ,𝑙2 (𝑑)|
𝑗 𝑒 βˆ’1
𝑗 𝑒 βˆ’1
𝑗 𝑒 βˆ’1
𝑗 𝑒 βˆ’1
𝑙 𝑒 βˆ’1
+ βˆ‘π‘—11 =0 β€βˆ‘π‘—22 =0 β€β€β€βˆ‘π‘™1 :|𝑙1 |β‰₯𝑙1𝑒 β€β€β€βˆ‘π‘™2 βˆˆβ„€ ‍|𝑒𝑗1 ,𝑙1 ;𝑗2 ,𝑙2 (𝑑)|2 + βˆ‘π‘—11 =0 β€βˆ‘π‘—22 =0 β€β€β€βˆ‘π‘™1 =βˆ’(𝑙𝑒 βˆ’1) β€β€β€βˆ‘π‘™2 :|𝑙2 |β‰₯𝑙2𝑒 ‍|𝑒𝑗1 ,𝑙1 ;𝑗2 ,𝑙2 (𝑑)|2
1
1
≀ πœ€1
for all 𝑑 ∈ [0, 𝑇]. Therefore
sup E|𝑋(𝑑) βˆ’ 𝑋̂(𝑑)|2 ≀ πœ€1
π‘‘βˆˆ[0,𝑇]
and it remains to apply Theorem 5.1.
Example. It is easy to see that a centered Gaussian process 𝑋 = {𝑋(𝑑), 𝑑 ∈ [0, 𝑇′]} with the
146
Ievgen Turchyn / Journal of Applied Mathematics and Statistics
(2016) Vol. 3 No. 3 pp. 137-148
correlation function
𝑅(𝑑, 𝑠) = βˆ«β„ ‍𝑒(𝑑, 𝑦1 , 𝑦2 )𝑒(𝑠, 𝑦1 , 𝑦2 )𝑑𝑦1 𝑑𝑦2 ,
where
𝑒(𝑑, 𝑦1 , 𝑦2 ) =
𝑑 4𝑙
2π‘š1
(1 + 𝑑 2𝑙 )2 + 𝐡(1 + 𝑑 2𝑙 )(𝑦1
2π‘š2
+ 𝑦2
2π‘š1 2π‘š2 ,
𝑦2
) + 𝐴𝑦1
𝑙, π‘š1 , π‘š2 ∈ β„•, π‘š1 β‰₯ 2, π‘š2 β‰₯ 2, 𝐴 β‰₯ 1, 𝐡 β‰₯ 1, together with two Daubechies wavelets of arbitrary
order satisfies the conditions of Theorem 5.2.
6. Conclusion
We consider an expansion of a second-order stochastic process based on two wavelets. This
expansion may be regarded as a generalization of an expansion from Kozachenko and Turchyn
(2008). We use our expansion to build a model of a stochastic process and obtain a theorem about
simulation of a sub-Gaussian stochastic process with given accuracy and reliability in 𝐿𝑝 ([0, 𝑇]) by
this model.
Acknowledgements
The author would like to thank professor Yuriy V. Kozachenko for valuable discussions which
helped to substantially improve the quality of the paper and an anonymous referee for the
constructive comments .
References
Buldygin, V.V., & Kozachenko, Yu.V. (2000). Metric Characterization of Random Variables and Random
Processes. Providence, RI: American Mathematical Society.
Didier, G., & Pipiras, V. (2008). Gaussian stationary processes: adaptive wavelet decompositions, discrete
approximations, and their convergence, J. Fourier Anal. Appl. 14, 203–234.
http://dx.doi.org/10.1007/s00041-008-9012-6
Härdle, W., Kerkyacharian, G., Picard, D., & Tsybakov, A. (1998). Wavelets, Approximation and Statistical
Applications. N.Y.: Springer.
http://dx.doi.org/10.1007/978-1-4612-2222-4
Kozachenko, Y., & Turchyn, Y. (2008). On Karhunen-Loève-like expansion for a class of random processes.
Int. J. Stat. Manag. Syst. 3, 43–55.
Kozachenko, Yu.V., & Turchin, E.V. (2009). Conditions for the uniform convergence of expansions of Ο†-subGaus- sian stochastic processes in function systems generated by wavelets. Theory Probab. Math. Stat.
78, 83–95.
http://dx.doi.org/10.1090/S0094-9000-09-00764-9
Kozachenko, Yu.V., Rozora, I.V., & Turchyn, Ye.V. (2011). Properties of some random series. Comm. Statist.
Theory Methods 40, 3672–3683.
http://dx.doi.org/10.1080/03610926.2011.581188
Meyer, Y., Sellan, F., & Taqqu, M. S. (1999). Wavelets, generalized white noise and fractional integration: the
syn- thesis of fractional Brownian motion. J. Fourier Anal. Appl. 5(5), 465–494.
147
Ievgen Turchyn / Journal of Applied Mathematics and Statistics
(2016) Vol. 3 No. 3 pp. 137-148
http://dx.doi.org/10.1007/BF01261639
Pipiras, V. (2004). Wavelet-type expansion of the Rosenblatt process. J. Fourier Anal. Appl. 10(6), 599–634.
http://dx.doi.org/10.1007/s00041-004-3004-y
Turchyn, Y. (2006). On accuracy of simulation of Gaussian stationary processes in L_2 ([0,T]). Theory Stoch.
Pro- cess. 12 (28), 255–260.
Turchyn, Y. (2011). Simulation of sub-Gaussian processes using wavelets. Monte Carlo Methods Appl. 17,
215– 231.
http://dx.doi.org/10.1515/mcma.2011.010
Walter, G., & Shen, X. (2000). Wavelets and Other Orthogonal Systems. London: Chapman & Hall/CRC.
Walter, G., & Zhang, J. (1994). A wavelet-based KL-like expansion for wide-sense stationary random
processes. IEEE Trans. Signal Process. 42, 1737–1745.
http://dx.doi.org/10.1109/78.298281
Zhao, P., Liu, G., & Zhao, C. (2004). A matrix-valued wavelet KL-like expansion for wide-sense stationary
random processes. IEEE Trans. Signal Proces. 52, 914–920.
http://dx.doi.org/10.1109/TSP.2004.823499
148