Columbia International Publishing Journal of Applied Mathematics and Statistics (2016) Vol. 3 No. 3 pp. 137-148 doi:10.7726/jams.2016.1011 Research Article A New Wavelet-based Expansion of a Random Process Ievgen Turchyn 1* Received: 28 July 2016; Published online: 1 October 2016 © The author 2016. Published with open access at www.uscip.us Abstract There has been obtained an expansion of a second-order stochastic process into a system of wavelet-based functions. This expansion is used for simulation of a sub-Gaussian stochastic process with given accuracy and reliability. Keywords: Wavelets; Sub-Gaussian stochastic processes; Expansion 1. Introduction One noteworthy class of expansions of random processes is formed by wavelet-based expansions. Wavelet-based expansions with uncorrelated terms are especially important since they are convenient for simulation and approximation of random processes. Different wavelet-based expansions of stochastic processes were studied by Walter and Zhang (1994), Meyer et al. (1999), Pipiras (2004), Zhao et al. (2004), Didier and Pipiras (2008). Kozachenko and Turchyn (2008) obtained a theorem about a wavelet-based expansion for a wide class of stochastic process. Namely, a centered second-order process π(π‘) with the correlation function π (π‘, π ) = β« βπ’(π‘, π¦)π’(π , π¦)ππ¦ β (π’(π‘,β ) β πΏ2 (β)) can be represented as the series π(π‘) = βπββ€ βπ0π π0π (π‘) + ββ π=0 ββπββ€ βπππ πππ (π‘) (1) which converges in πΏ2 (Ξ©) for any fixed π‘, where ______________________________________________________________________________________________________________________________ *Corresponding e-mail: [email protected] 1 Oles Honchar Dnipropetrovsk National University 137 Ievgen Turchyn / Journal of Applied Mathematics and Statistics (2016) Vol. 3 No. 3 pp. 137-148 1 β2π β« βπ’(π‘, π¦)πΜ0π (π¦)ππ¦,ββββπππ (π‘) = 1 β« βπ’(π‘, π¦)πΜππ (π¦)ππ¦, β2π β β Μ π(π¦) is an π-wavelet, π(π¦) is the corresponding π-wavelet, π0π (π¦) and πΜππ (π¦) are the Fourier transforms of π0π (π¦) = π(π¦ β π) and πππ (π¦) = 2π/2 π(2π π¦ β π) correspondingly, π0π and πππ are uncorrelated random variables. π0π (π‘) = The rate of convergence of this expansion in different functional spaces was studied by Turchyn (2006), Kozachenko and Turchyn (2008), Turchyn (2011a), Turchyn (2011b). Conditions for uniform convergence with probability 1 and in probability were obtained by Kozachenko and Turchin (2009). A more general expansion of a random process (based on an arbitrary orthonormal basis in πΏ2 (π)) was considered by Kozachenko et al. (2011). We propose a new wavelet-type expansion of a second-order stochastic process based on a basis in πΏ2 (β2 ) which is built using wavelets. This expansion is similar to (1) but is more flexible since we use two wavelets for this expansion instead of one wavelet in (1). We find the rate of convergence of our expansion in πΏπ ([0, π]) for a sub-Gaussian process in terms of simulation with given accuracy and reliability. A model based on our expansion can be used for simulation of a Gaussian process. 2. Auxiliary Facts Let π β πΏ2 (β) be such a function that the following assumptions hold: i) β β|πΜ(π¦ + 2ππ)|2 = 1ββββa. e., πββ€ where πΜ(π¦) is the Fourier transform of π, πΜ(π¦) = β« βexp{βππ¦π₯}π(π₯)ππ₯; β ii) there exists a function π0 β πΏ2 ([0,2π]) such that π0 (π₯) has period 2π and almost everywhere π¦ π¦ πΜ(π¦) = π0 ( ) πΜ ( ) ; 2 2 iii) πΜ(0) β 0 and the function πΜ(π¦) is continuos at 0. The function π(π₯) is called a π-wavelet. Let π(π₯) be the inverse Fourier transform of the function π¦ π¦ π¦ πΜ(π¦) = π0 ( + π) exp{βπ }βπΜ ( ). 2 2 2 The function π(π₯) is called a π-wavelet. Let πππ (π₯) = 2π/2 π(2π π₯ β π), πππ (π₯) = 2π/2 π(2π π₯ β π),ββββπ β β€, π = 0,1, β¦ 138 Ievgen Turchyn / Journal of Applied Mathematics and Statistics (2016) Vol. 3 No. 3 pp. 137-148 It is known that the family of functions {π0π , πππ , π = 0,1, β¦ ; π β β€} is an orthonormal basis in πΏ2 (β). Obviously the system {πΜ0π /β2π, πΜππ /β2π, π = 0,1, β¦ ; π β β€} also is an orthonormal basis in πΏ2 (β) and therefore any function π β πΏ2 (β) can be represented as π(π₯) = 1 β2π βπββ€ βπ0π πΜ0π (π₯) + 1 β2π Μ ββ π=0 ββπββ€ βπππ πππ (π₯), (2) where π0π = 1 β« βπ(π₯)πΜ0π (π₯)ππ₯, β2π β πππ = 1 β« βπ(π₯)πΜππ (π₯)ππ₯, β2π β series (2) converges in the norm of the space πΏ2 (β). More detailed information about wavelets is contained, for instance, in Härdle et al. (1998) or Walter and Shen (2000). Definition 2.1. A centered random variable π is called sub-Gaussian if there exists such a constant π β₯ 0 that Eexp{ππ} β€ exp{π2 π2 /2},ββββπ β β. The class of all sub-Gaussian random variables on a standard probability space {Ξ©, β¬, π} is a Banach space with respect to the norm π(π) = inf{π β₯ 0: Eexp{ππ} β€ exp{π2 π2 /2}, π β β}. Definition 2.2 A sub-Gaussian random variable π is called strictly sub-Gaussian if π(π) = (Eπ 2 )1/2 . Example. A centered Gaussian random variable is strictly sub-Gaussian. Definition 2.3. A stochastic process π = {π(π‘), π‘ β π»} is called sub-Gaussian if all the random variables π(π‘), π‘ β π», are sub-Gaussian. Example. Any centered Gaussian process is sub-Gaussian. Details about sub-Gaussian random variables and processes can be found in Buldygin and Kozachenko (2000). 3. A wavelet-based Expansion Theorem 3.1. (Kozachenko et al. (2011)) Suppose that {π(π‘), π‘ β π»} is a centered second-order random process with the correlation function π (π‘, π ) = Eπ(π‘)π(π ), β(π¬, β¬π¬ , π) is a measure space, {ππ (π), π β β€} is an orthonormal basis in πΏ2 (π¬, π) and π’(π‘,β ) β πΏ2 (π¬, π), π‘ β π». The correlation function π (π‘, π ) of π(π‘) can be represented as 139 Ievgen Turchyn / Journal of Applied Mathematics and Statistics (2016) Vol. 3 No. 3 pp. 137-148 π (π‘, π ) = β«π¬ βπ’(π‘, π)π’(π , π)ππ(π), (3) if and only if the process π(π‘) can be represented as π(π‘) = βπββ€ βππ (π‘)ππ ,βββπ‘ β π», (4) where (4) converges in πΏ2 (πΊ), π‘ β π», ππ (π‘) = β«π¬ βπ’(π‘, π)ππ (π)ππ(π), ππ are centered random variables such that Eππ βππ = πΏππ . The following result enables us to expand a second-order process in a random series with uncorrelated terms which is built using two wavelets. Theorem 3.2. Let π = {π(π‘), π‘ β [0, πβ²]} be a centered random process such that E|π(π‘)|2 < β for all π‘ β [0, πβ²]β. Let π (π‘, π ) = Eπ(π‘)π(π ) and there exists such a Borel function π’(π‘, π¦1 , π¦2 ), π¦π β β,β π‘ β [0, πβ²], that β«β2 β|π’(π‘, π¦1 , π¦2 )|2 ππ¦1 ππ¦2 < β (π = 1,2)βfor all π‘ β [0, πβ²] and π (π‘, π ) = β« βπ’(π‘, π¦1 , π¦2 )π’(π , π¦1 , π¦2 )ππ¦1 ππ¦2 β.βββββββββββββββββββββββββββββββββββββββββββ(5) β2 Let π (1) (π₯), π (1) (π₯) and π (2) (π₯), π (2) (π₯) be two pairs of a π-wavelet and the corresponding π-wavelet. Then the process π(π‘) can be represented as the following series which converges for any π‘ β [0, πβ²] in πΏ2 (πΊ): β π(π‘) = β β β βπ0,π1 ,π2 (π‘)π0,π1 ,π2 + β ββ ββ βππ;π,π (π‘)ππ;π,π π1 ββ€ π2 ββ€ β πββ€ π=0 πββ€ β β + β ββ ββ βππ;π,π (π‘)ππ;π,π + β β β β β β β βππ1 ,π1 ;π2 ,π2 (π‘)ππ1 ,π1 ;π2 ,π2 ,ββββββββββββββββββββββββ(6) πββ€ π=0 πββ€ π1 =0 π1 ββ€ π2 =0 π2 ββ€ where π0,π1 ,π2 (π‘) = 1 (1) (2) β« βπ’(π‘, π¦1 , π¦2 )πΜ0,π (π¦1 )βπΜ0,π (π¦2 )ππ¦1 ππ¦2 ,βββββββββββββββββββββββββββββββββββ(7) 1 2 2π β2 ππ;π,π (π‘) = 1 (1) (2) β« βπ’(π‘, π¦1 , π¦2 )πΜ0,π (π¦1 )βπΜπ,π (π¦2 )ππ¦1 ππ¦2 ,βββββββββββββββββββββββββββββββββββββ(8) 2π β2 ππ;π,π (π‘) = 1 (1) (2) β« βπ’(π‘, π¦1 , π¦2 )πΜπ,π (π¦1 )βπΜ0,π (π¦2 )ππ¦1 ππ¦2 ,ββββββββββββββββββββββββββββββββββββββ(9) 2π β2 ππ1 ,π1 ;π2 ,π2 (π‘) = 1 (1) (2) β« βπ’(π‘, π¦1 , π¦2 )πΜπ ,π (π¦1 )βπΜπ ,π (π¦2 )ππ¦1 ππ¦2 ,ββββββββββββββββββββββββββββββββ(10) 1 1 2 2 2π β2 all the random variables π0,π1 ,π2 , ππ;π,π , ππ;π,π , ππ1 ,π1 ;π2 ,π2 are centered and uncorrelated, E|π0,π1 ,π2 |2 = E|ππ;π,π |2 = E|ππ;π,π |2 = E|ππ1 ,π1 ;π2 ,π2 |2 = 1. 140 Ievgen Turchyn / Journal of Applied Mathematics and Statistics (2016) Vol. 3 No. 3 pp. 137-148 Proof. It is enough to apply Theorem 3.1 to the process π(π‘) and the orthonormal basis β± defined as β± = β±1 βͺ β±2 βͺ β±3 βͺ β±4 , where (1) (2) β±1 = πΜ0,π1 (π¦1 )πΜ0,π2 (π¦2 )/(2π), π1 , π2 β β€, (1) (2) β±2 = πΜ0,π1 (π¦1 )πΜπ2 ,π2 (π¦2 )/(2π), π1 , π2 β β€, π2 = 0,1, β¦, (1) (2) β±3 = πΜπ1 ,π1 (π¦1 )πΜ0,π2 (π¦2 )/(2π), π1 , π2 β β€, π1 = 0,1, β¦, (1) (2) β±4 = πΜπ1 ,π1 (π¦1 )πΜπ2 ,π2 (π¦2 )/(2π), π1 , π2 β β€, π1 , π2 = 0,1, β¦ Remark. We can generalize expansion (6) if we consider a centered random field π = {π(π‘), π‘ β π} (where π β βπ ) which correlation function can be represented as π (π‘, π ) = β« βπ’(π‘, π¦1 , π¦2 , β¦ , π¦π )π’(π , π¦1 , π¦2 , β¦ , π¦π )ππ¦1 ππ¦2 β¦ ππ¦π ,ββββββββββββββββββββββββββ(11) βπ π’(π‘,β ,β , β¦ ,β ) β πΏ2 (βπ ), and apply Theorem 3.1 to the orthonormal basis in πΏ2 (βπ ) which is the (π) (π) tensor product of orthonormal bases {πΜ0,π (π₯)/β2π, π β β€; πΜπ,π (π₯)/β2π, π = 0,1, β¦ ; π, π β β€} , π = 1,2, β¦ , π (π (π) (π₯) and π (π) (π₯) are pairs of a π-wavelet and the corresponding π-wavelet). Let us consider the case π = π. If π = {π(π‘), π‘ β π β βπ } is a centered stationary random field which has the spectral density π(π¦), π¦ β βπ , then its correlation fucntion π (π‘, π ) can be represented as (11) if we set π’(π‘, π¦) = βπ(π¦)exp{βπ(π‘, π¦)}, where π‘ = (π‘1 , π‘2 , β¦ , π‘π ), π¦ = (π¦1 , π¦2 , β¦ , π¦π ) . So π(π‘) can be expanded into a series of types (4)βandβ(6). 4. Inequalities for the Coefficients Lemma 4.1. Let π(π‘) be a stochastic process which satisfies the conditions of Theorem 3.2 together with the f-wavelets π (1) (π₯), π (2) (π₯) and the corresponding m-wavelets π (1) (π₯), π (2) (π₯), the function π’(π‘, π¦1 , π¦2 ) from (5) is such that |π’(π‘, π¦1 , π¦2 )| β€ π£1 (π‘, π¦1 )βπ£2 (π‘, π¦2 ), (12) (π) where π£π (π‘,β ) β πΏ2 (β)β(π = 1,2). Assume that πΜ (π¦) are absolutely continuous, π£π (π‘, π¦) are absolutely continuous with respect to π¦ for any fixed π‘, there exist ππ£π (π‘, π¦)/ππ¦, ππΜ (π) (π¦)/ππ¦, ππΜ (π) (π¦)/ππ¦ and ππΜ (π) (π¦) | | β€ πΆπ , ππ¦ |π£π (π‘, π¦)| β€ π»π (π‘)βπ£πβ (π¦), βπ£π (π‘, π¦) | | β€ πΊπ (π‘)βπ£πββ (π¦), βπ¦ 141 Ievgen Turchyn / Journal of Applied Mathematics and Statistics (2016) Vol. 3 No. 3 pp. 137-148 sup π»π (π‘) < β, π‘β[0,π] sup πΊπ (π‘) < β, π‘β[0,π] β« βπ£πβ (π¦)|π¦|ππ¦ < β, β β« βπ£πβ (π¦)ππ¦ < β, β β« βπ£πβ (π¦) | β ππΜ (π) (π¦) | ππ¦ < β, ππ¦ β« βπ£πβ (π¦)|πΜ (π) (π¦)|ππ¦ < β, β β« βπ£πββ (π¦)|π¦|ππ¦ < β, β β« βπ£πββ (π¦)|πΜ (π) (π¦)|ππ¦ < β, β lim π£π (π‘, π¦)|πΜ (π) (π¦)| = 0,ββββπ‘ β β, |π¦|ββ lim π£π (π‘, π¦)|πΜ (π) (π¦/2π )| = 0,ββββπ‘ β β, |π¦|ββ π = 0,1, β¦, π = 1,2. Define (π) π1 (π) = ππΜ (π) (π¦) β β« βπ£π (π¦) | | ππ¦, ππ¦ β2π β π2 = 1 1 β2π (π) π1 = β« βπ£πββ (π¦)|πΜ (π) (π¦)|ππ¦, β πΆπ β« βπ£πβ (π¦)ππ¦, β2π β πΆπ (π) β« βπ£πββ (π¦)|π¦|ππ¦, π2 = β2π β 1 β« βπ£πβ (π¦)|πΜ (π) (π¦)|ππ¦, πΏ(π) = β2π β πΆπ β« βπ£πβ (π¦)|π¦|ππ¦, π (π) = β2π β π = 1,2. Then the following inequalities hold: |π0,π1 ,π2 (π‘)| β€ π΄π,π (π‘) ,ββββπ1 β 0, π2 β 0,βββββββββββββββββββββββββββββββββββββββββββββββββββββ(13) |π1 ||π2 | 142 Ievgen Turchyn / Journal of Applied Mathematics and Statistics (2016) Vol. 3 No. 3 pp. 137-148 π΄π,0 (π‘) ,ββββπ1 β 0,βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ(14) |π1 | π΄0,π (π‘) |π0,0,π2 (π‘)| β€ ,ββββπ2 β 0,βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ(15) |π2 | βββββββββββββββββββββββββββββββββββββββββββββββββββ|π0,0,0 (π‘)| β€ π΄0,0 (π‘),ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ(16) |π0,π1 ,0 (π‘)| β€ π΅π,π (π‘) ,ββββπ β 0, π β 0,βββββββββββββββββββββββββββββββββββββββββββββββββββ(17) 2π/2 |π||π| |ππ;π,π (π‘)| β€ |π0;π,π (π‘)| β€ π΅0,π (π‘) ,ββββπ β 0,ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ(18) 2π/2 |π| |ππ;π,0 (π‘)| β€ π΅π,0 (π‘) ,ββββπ β 0,ββββββββββββββββββββββββββββββββββββββββββββββββββββββ(19) |π|23π/2 π΅0,0 (π‘) ,βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ(20) 23π/2 π·π,π (π‘) |ππ;π,π (π‘)| β€ π/2 ,ββββπ β 0, π β 0,βββββββββββββββββββββββββββββββββββββββββββββββββ(21) 2 |π||π| |π0;π,0 (π‘)| β€ π·0,π (π‘) ,ββββπ β 0,βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ(22) 2π/2 |π| π·π,0 (π‘) |ππ;π,0 (π‘)| β€ ,ββββπ β 0,ββββββββββββββββββββββββββββββββββββββββββββββββββββββ(23) |π|23π/2 |π0;π,π (π‘)| β€ |π0;π,0 (π‘)| β€ |ππ1 ,π1 ;π2 ,π2 (π‘)| β€ π·0,0 (π‘) ,βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ(24) 23π/2 πΈπ,π (π‘) ,ββββπ1 π /2 2 1 β2π2 /2 β|π1 ||π2 | β 0, π2 β 0,βββββββββββββββββββββββββββββββββββββββββββ(25) |ππ1 ,0;π2 ,π2 (π‘)| β€ πΈ0,π (π‘) ,ββββπ2 β 0,βββββββββββββββββββββββββββββββββββββββββββββββββββ(26) 23π1 /2 β2π2 /2 β|π2 | |ππ1 ,π1 ;π2 ,0 (π‘)| β€ πΈπ,0 (π‘) ,ββββπ1 π /2 1 2 β23π2 /2 β|π1 | |ππ1 ,0;π2 ,0 (π‘)| β€ β 0,ββββββββββββββββββββββββββββββββββββββββββββββββββ(27) πΈ0,0 (π‘) ,βββββββββββββββββββββββββββββββββββββββββββββββββββββ(28) 3π 2 1 /2 β23π2 /2 where (1) (1) (2) (2) π΄π,π (π‘) = (π1 π»1 (π‘) + π2 πΊ1 (π‘))(π1 π»2 (π‘) + π2 πΊ2 (π‘)), (2) (2) (1) (1) π΄0,π (π‘) = (π1 π»2 (π‘) + π2 πΊ2 (π‘))πΏ(1) π»1 (π‘), π΄π,0 (π‘) = (π1 π»1 (π‘) + π2 πΊ1 (π‘))πΏ(2) π»2 (π‘), π΄0,0 (π‘) = πΏ(1) πΏ(2) π»1 (π‘)π»2 (π‘), (1) (1) (2) (2) π΅π,π (π‘) = (π1 π»1 (π‘) + π2 πΊ1 (π‘))(π1 π»2 (π‘) + π2 πΊ2 (π‘)), 143 Ievgen Turchyn / Journal of Applied Mathematics and Statistics (2016) Vol. 3 No. 3 pp. 137-148 (2) (2) π΅0,π (π‘) = πΏ(1) π»1 (π‘)(π1 π»2 (π‘) + π2 πΊ2 (π‘)), (1) (1) π΅π,0 (π‘) = π (2) π»2 (π‘)(π1 π»1 (π‘) + π2 πΊ1 (π‘)), π΅0,0 (π‘) = πΏ(1) π (2) π»1 (π‘)π»2 (π‘), (2) (2) (1) (1) π·π,π (π‘) = (π1 π»2 (π‘) + π2 πΊ2 (π‘))(π1 π»1 (π‘) + π2 πΊ1 (π‘)), (1) (1) π·0,π (π‘) = πΏ(2) π»2 (π‘)(π1 π»1 (π‘) + π2 πΊ1 (π‘)), (2) (2) π·π,0 (π‘) = π (1) π»1 (π‘)(π1 π»2 (π‘) + π2 πΊ2 (π‘)), π·0,0 (π‘) = πΏ(2) π (1) π»1 (π‘)π»2 (π‘), (1) (1) (2) (2) πΈπ,π (π‘) = (π1 π»1 (π‘) + π2 πΊ1 (π‘))(π1 π»2 (π‘) + π2 πΊ2 (π‘)), (2) (2) (1) (1) πΈ0,π (π‘) = π (1) π»1 (π‘)(π1 π»2 (π‘) + π2 πΊ2 (π‘)), πΈπ,0 (π‘) = π (2) π»2 (π‘)(π1 π»1 (π‘) + π2 πΊ1 (π‘)), πΈ0,0 (π‘) = π (1) π (2) π»1 (π‘)π»2 (π‘). Proof. Let us prove, for instance, inequality (13). We have |π0,π1 ,π2 (π‘)| β€ 1 (1) (2) |β« βπ£ (π‘, π¦1 )πΜ0,π (π¦1 )ππ¦1 |ββ|β« βπ£2 (π‘, π¦2 )πΜ0,π (π¦2 )ππ¦2 |. 1 2 2π β 1 β Estimating the integrals in the right-hand side by means of Lemma 1 from Turchyn (2011a), we obtain (13). Inequalities (14)β(28) are proved in a similar way. 5. Simulation Expansion (6) may be used for simulation of stochastic processes. If a process π(π‘) satisfies the conditions of Theorem 3.2, then we can consider as a model of π(π‘) the process π π π π π π β1 π β1 π β1 β1 π β1 πΜ(π‘) = βπ1 =β(π π β1) ββββπ2 =β(π π β1) βπ0,π1 ,π2 (π‘)π0,π1 ,π2 + βππ=β(π π β1) ββββπ=0 ββββπ=β(π π β1) βππ;π,π (π‘)ππ;π,π 1 1 π π β1 π 2 2 π β1 π β1 + βππ=β(π π β1) ββββπ=0 ββββπ=β(π π β1) βππ;π,π (π‘)ππ;π,π π π β1 π π β1 π π β1 π π β1 + βπ11 =0 ββββπ1 =β(ππ β1) ββββπ22 =0 ββββπ2 =β(ππ β1) βππ1 ,π1 ;π2 ,π2 (π‘)ππ1 ,π1 ;π2 ,π2 β, 1 1 2 2 (30) where π0,π1 ,π2 , ππ;π,π , ππ;π,π , ππ1 ,π1 ;π2 ,π2 are the random variables from expansion (6), the functions π0,π1 ,π2 (π‘), ππ;π,π (π‘), ππ;π,π (π‘), ππ1 ,π1 ;π2 ,π2 (π‘) are calculated using (7)β(10), the parameters π1π , π2π , ππ , ππ , π π , π π , π π , π π , π1π , π1π , π2π , π2π are strictly greater than 1. 144 Ievgen Turchyn / Journal of Applied Mathematics and Statistics (2016) Vol. 3 No. 3 pp. 137-148 Remark. If π(π‘) is a Gaussian process then π0,π1 ,π2 , ππ;π,π , ππ;π,π , ππ1 ,π1 ;π2 ,π2 in (30) are independent random variables with distribution π(0,1) and the model πΜ(π‘) can be used for computer simulation of π(π‘). Definition 5.1. We say that the model πΜ(π‘) approximates a process π(π‘) with given reliability 1 β πΏ (0 < πΏ < 1) and accuracy π > 0 in πΏπ ([0, π]) if 1/π π π {(β« β|π(π‘) β πΜ(π‘)|π ππ‘) > π} β€ πΏ. 0 Remark. We will consider only real-valued π-wavelets and π-wavelets below. Definition 5.2. We say that the condition R1 holds for a stochastic process π(π‘) if it satisfies the conditions of Theorem 3.2, π’(π‘,β ,β ) β πΏ1 (β2 ) β© πΏ2 (β2 ) and inverse Fourier transform π’Μ(π‘, π¦1 , π¦2 ) of the function π’(π‘, π¦1 , π¦2 ) with respect to (π¦1 , π¦2 ) is a real-valued function. Theorem 5.1. (Turchyn (2011a)) Suppose that π(π‘) is a sub-Gaussian random process that satisfies condition R1, πΜ(π‘) is the model of the process defined by (30), random variables π0,π1 ,π2 , ππ;π,π , ππ;π,π , ππ1 ,π1 ;π2 ,π2 in expansion (6) of π(π‘) are independent and strictly sub-Gaussian, π β₯ 1, πΏ β (0; 1), π > 0, π β (0, πβ²). If sup E|π(π‘) β πΜ(π‘)|2 β€ min { π‘β[0,π] π2 π2 ,βββ }, 2π 2/π ln(2/πΏ) ππ 2/π then the model πΜ(π‘) approximates the process π(π‘) with reliability 1 β πΏ and accuracy π in πΏπ ([0, π]). The following theorem is the main result of the article. Theorem 5.2 Suppose that a sub-Gaussian random process π = {π(π‘), π‘ β [0, πβ²]} satisfies the condition R1 and the conditions of Lemma 4.1 together with π-wavelets π (1) (π₯), π (2) (π₯) and the corresponding π -wavelets π (1) (π₯), π (2) (π₯) , the random variables π0,π1 ,π2 , ππ;π,π , ππ;π,π , ππ1 ,π1 ;π2 ,π2 in expansion (6) of π(π‘) are independent and strictly sub-Gaussian, π β₯ 1, π β (0, πβ²), πΏ β (0; 1), π > 0. Denote by π΄Μπ,0 (π), β¦ , πΈΜ0,π (π) the suprema of the functions π΄π,0 (π‘), β¦ , πΈ0,π (π‘) correspondingly on [0, π] (where π΄π,0 (π‘), β¦ , πΈ0,π (π‘) are defined in Lemma 4.1), π2 π2 π1 = min { 2/π , 2/π }. 2π ln(2/πΏ) ππ If π1π β₯ 1 + (16(π΄Μπ,0 (π))2 + 64(π΄Μπ,π (π))2 )/π1 , π2π β₯ 1 + (16(π΄Μ0,π (π))2 + 64(π΄Μπ,π (π))2 )/π1 , ππ β₯ 1 + ((256/7)(π΅Μπ,0 (π))2 + 256(π΅Μπ,π (π))2 )/π1 , 145 Ievgen Turchyn / Journal of Applied Mathematics and Statistics (2016) Vol. 3 No. 3 pp. 137-148 π π β₯ 1 + (256(π΅Μπ,π (π))2 + 64(π΅Μ0,π (π))2 )/π1 , ππ β₯ max {1 + log 2 64(π΅Μ0,π (π))2 + 256(π΅Μπ,π (π))2 64(π΅Μπ,0 (π))2 + 16(π΅Μ0,0 (π))2 , 1 + log 8 }, π1 7π1 Μπ,0 (π))2 + 256(π· Μπ,π (π))2 )/π1 , π π β₯ 1 + ((256/7)(π· Μπ,π (π))2 + 64(π· Μ0,π (π))2 )/π1 , π π β₯ 1 + (256(π· π π β₯ max {1 + log 2 Μ0,π (π))2 + 256(π· Μπ,π (π))2 Μπ,0 (π))2 + 16(π· Μ0,0 (π))2 64(π· 64(π· , 1 + log 8 }, π1 7π1 π1π β₯ max{1 + log 2 768(πΈΜπ,π (π))2 + 768(πΈΜπ,0 (π))2 /7 24(πΈΜ0,π (π))2 /7 + 24(πΈΜ0,0 (π))2 /49 , 2 + log 8 }, π1 π1 π2π β₯ max{1 + log 2 768(πΈΜπ,π (π))2 + 768(πΈΜ0,π (π))2 /7 24(πΈΜπ,0 (π))2 /7 + 24(πΈΜ0,0 (π))2 /49 , 2 + log 8 }, π1 π1 π1π β₯ 1 + 768(πΈΜπ,π (π))2 + 768(πΈΜπ,0 (π))2 /7 , π1 π2π β₯ 1 + 768(πΈΜπ,π (π))2 + 768(πΈΜ0,π (π))2 /7 , π1 then the model πΜ(π‘) defined by (30) approximates the process π(π‘) with reliability 1 β πΏ and accuracy π in πΏπ ([0, π]). Proof. It is easy to see using Lemma 4.1 that under the assumptions of the theorem π π β1 E|π(π‘) β πΜ(π‘)|2 = βπ1 :|π1 |β₯π1π ββββπ2 ββ€ β|π0,π1 ,π2 (π‘)|2 + βπ1 =β(π π β1) ββββπ2 :|π2 |β₯π2π β|π0,π1 ,π2 (π‘)|2 1 2 + βπ:|π|β₯π π βββββ π=0 ββββπββ€ β|ππ;π,π (π‘)| + 1 π β1 β 2 βππ=β(π π β1) ββββπ=π π ββββπββ€ β|ππ;π,π (π‘)| π π β1 π β1 β 2 2 + βππ=β(π π β1) ββββπ=0 ββββπ:|π|β₯π π β|ππ;π,π (π‘)| + βπ:|π|β₯π π ββββπ=0 ββββπββ€ β|ππ;π,π (π‘)| π π π β1 π β1 β π β1 2 2 + βππ=β(π π β1) ββββπ=π π ββββπββ€ β|ππ;π,π (π‘)| β + β βπ=β(π π β1) ββββπ=0 ββββπ:|π|β₯π π β|ππ;π,π (π‘)| π π β1 β β 1 2 2 + ββ π1 =π1π ββπ2 =0 ββββπ1 ββ€ ββββπ2 ββ€ β|ππ1 ,π1 ;π2 ,π2 (π‘)| + βπ1 =0 ββπ2 =π2π ββββπ1 ββ€ ββββπ2 ββ€ β|ππ1 ,π1 ;π2 ,π2 (π‘)| π π β1 π π β1 π π β1 π π β1 π π β1 + βπ11 =0 ββπ22 =0 ββββπ1 :|π1 |β₯π1π ββββπ2 ββ€ β|ππ1 ,π1 ;π2 ,π2 (π‘)|2 + βπ11 =0 ββπ22 =0 ββββπ1 =β(ππ β1) ββββπ2 :|π2 |β₯π2π β|ππ1 ,π1 ;π2 ,π2 (π‘)|2 1 1 β€ π1 for all π‘ β [0, π]. Therefore sup E|π(π‘) β πΜ(π‘)|2 β€ π1 π‘β[0,π] and it remains to apply Theorem 5.1. Example. It is easy to see that a centered Gaussian process π = {π(π‘), π‘ β [0, πβ²]} with the 146 Ievgen Turchyn / Journal of Applied Mathematics and Statistics (2016) Vol. 3 No. 3 pp. 137-148 correlation function π (π‘, π ) = β«β βπ’(π‘, π¦1 , π¦2 )π’(π , π¦1 , π¦2 )ππ¦1 ππ¦2 , where π’(π‘, π¦1 , π¦2 ) = π‘ 4π 2π1 (1 + π‘ 2π )2 + π΅(1 + π‘ 2π )(π¦1 2π2 + π¦2 2π1 2π2 , π¦2 ) + π΄π¦1 π, π1 , π2 β β, π1 β₯ 2, π2 β₯ 2, π΄ β₯ 1, π΅ β₯ 1, together with two Daubechies wavelets of arbitrary order satisfies the conditions of Theorem 5.2. 6. Conclusion We consider an expansion of a second-order stochastic process based on two wavelets. This expansion may be regarded as a generalization of an expansion from Kozachenko and Turchyn (2008). We use our expansion to build a model of a stochastic process and obtain a theorem about simulation of a sub-Gaussian stochastic process with given accuracy and reliability in πΏπ ([0, π]) by this model. Acknowledgements The author would like to thank professor Yuriy V. Kozachenko for valuable discussions which helped to substantially improve the quality of the paper and an anonymous referee for the constructive comments . References Buldygin, V.V., & Kozachenko, Yu.V. (2000). Metric Characterization of Random Variables and Random Processes. Providence, RI: American Mathematical Society. Didier, G., & Pipiras, V. (2008). Gaussian stationary processes: adaptive wavelet decompositions, discrete approximations, and their convergence, J. Fourier Anal. Appl. 14, 203β234. http://dx.doi.org/10.1007/s00041-008-9012-6 Härdle, W., Kerkyacharian, G., Picard, D., & Tsybakov, A. (1998). Wavelets, Approximation and Statistical Applications. N.Y.: Springer. http://dx.doi.org/10.1007/978-1-4612-2222-4 Kozachenko, Y., & Turchyn, Y. (2008). On Karhunen-Loève-like expansion for a class of random processes. Int. J. Stat. Manag. Syst. 3, 43β55. Kozachenko, Yu.V., & Turchin, E.V. (2009). Conditions for the uniform convergence of expansions of Ο-subGaus- sian stochastic processes in function systems generated by wavelets. Theory Probab. Math. Stat. 78, 83β95. http://dx.doi.org/10.1090/S0094-9000-09-00764-9 Kozachenko, Yu.V., Rozora, I.V., & Turchyn, Ye.V. (2011). Properties of some random series. Comm. Statist. Theory Methods 40, 3672β3683. http://dx.doi.org/10.1080/03610926.2011.581188 Meyer, Y., Sellan, F., & Taqqu, M. S. (1999). Wavelets, generalized white noise and fractional integration: the syn- thesis of fractional Brownian motion. J. Fourier Anal. Appl. 5(5), 465β494. 147 Ievgen Turchyn / Journal of Applied Mathematics and Statistics (2016) Vol. 3 No. 3 pp. 137-148 http://dx.doi.org/10.1007/BF01261639 Pipiras, V. (2004). Wavelet-type expansion of the Rosenblatt process. J. Fourier Anal. Appl. 10(6), 599β634. http://dx.doi.org/10.1007/s00041-004-3004-y Turchyn, Y. (2006). On accuracy of simulation of Gaussian stationary processes in L_2 ([0,T]). Theory Stoch. Pro- cess. 12 (28), 255β260. Turchyn, Y. (2011). Simulation of sub-Gaussian processes using wavelets. Monte Carlo Methods Appl. 17, 215β 231. http://dx.doi.org/10.1515/mcma.2011.010 Walter, G., & Shen, X. (2000). Wavelets and Other Orthogonal Systems. London: Chapman & Hall/CRC. Walter, G., & Zhang, J. (1994). A wavelet-based KL-like expansion for wide-sense stationary random processes. IEEE Trans. Signal Process. 42, 1737β1745. http://dx.doi.org/10.1109/78.298281 Zhao, P., Liu, G., & Zhao, C. (2004). A matrix-valued wavelet KL-like expansion for wide-sense stationary random processes. IEEE Trans. Signal Proces. 52, 914β920. http://dx.doi.org/10.1109/TSP.2004.823499 148
© Copyright 2026 Paperzz