BERNSTEIN POLYNOMIALS FOR FUNCTIONS OF TWO VARIABLES OF CLASS C<» EDWARD H. KINGSLEY1 Introduction. Let <¡>{x,y) be a continuous function of the real variables x and y, where x and y are in the closed region R: O^x^ 1, O^y^l. The Bernstein polynomial Bmn(x, y) associated with the function 4>(x, y) is defined as (1) Bmn(x, y) = ¿j 2-, <t>[— ' —)K.p(x)\m,, p=o 5=0 \ n where X„,„(x) = C«lPx*(l -*)»-», m / (y) Xm,8(y) = Cm,qy"(i -y)m~<>. A function <¡>{x,y) is said to be of class C(*>for x and y in i?, if the partial derivatives of order 1,2, ■ ■ • , k of 4>(x, y) exist and are continuous. We shall use the notation ,(••.*-••) $ = dw<t>(x, y) ., ■. ^_- and, for brevity, shall omit functional arguments whenever possible. It is the purpose of this paper to prove the Theorem. (t = 0, 1, • • • , *) from expressions If 4>(x, y) is of class C(*>for x and y in R, then hm Bmn = <j> mtn= » and the convergence is uniform in R. This theorem, for functions of one variable and for k = 0, was proved by S. Bernstein [l],2 and again for functions of one variable but for arbitrary k, the theorem was proved by S. Wigert [2]. The process of extending the results of Bernstein and Wigert to functions of two variables of class C(W introduces aspects which are of interest. Preliminary results. We shall make use of the relations n (2) 2^ X„,p(x)= 1, _ p-o Received by the editors December 12, 1949. 1 This is part of a thesis written under the direction of Professor E. D. Hellinger for the degree M.S. at Northwestern University, June 1949. 8 Numbers in brackets refer to the bibliography at the end of the paper. 64 License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use 65 BERNSTEIN POLYNOMIALS 23 (nx —pyK,p(x) = nx(l — x) (8) [3, p. 152]. 3>—0 If we define, for k^O, i = 0, 1, = Z£H) *, Í+(*-«) c^í.oCV-rt.^í g+(*-*-|3)N m ■ a=0 0=0 then, by mathematical induction, the following two lemmas can be established. Lemma 1. If O^i^k, i^n, k^m, x and y in R, then the kth partial derivatives of the Bernstein polynomials B n—i m—k+i n\m\ (¿,fc— i) (1) are given by . . (n — i) \(m — k + i) ! p=o 4=0 Lemma 2. IfO^i^k, 0¿p¿n —i, O^q^m —k+i, and if <j>(x, y) is of class C{k)for x and y in R, then there exist two real numbers £ = £(/>), 7=7(3) SU£h^t «,*-<) Ap.q 0<£<1, = 0<7<1 and such that ,k-i)/p 1 {i,k-i) / + £i q + y(k — Ï) . , . <f> I n'mk~l n \ m )• The next lemma is basic for the proof of the theorem, Lemma 3. For fixed x and y in R and for fixed positive integers M and N, let d be an arbitrary positive number and let a(p, q) be a quantity dependent upon p and q and such that (4) I a(p, q)I á xi for (5) I a(p, q) I = 7T2for P_ :S d N and M P_ > d and \y - I N M úd, > d. Furthermore, assume that it is possible to split off from a(p, q) terms a'{p) independent of q or terms b'{q) independent of p, that is, a(p, q) = a"(p, q) + a'(p) = b"(p, q) + b'(q) such that (6) (7) P ^ d and I cf'ip) I g *3 for] I a'(p, g) I á 7T4for N x— N ûd, License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use y- M >d, 66 E. H. KINGSLEY b"(p, q)\£n (8) for X — N > d and y- M -a, y' M £d, b'(q) | è ire for (9) P [February then N M E E a(P<°)^N,p^M.q p—0 s=0 (10) g Proof. 1T1 + 1T4 + 7T2(M + 2V) 7TS 8MNd* 4Md2 T6 + T5 4Nd* Consider the inequality AT M E 2 a(í> ?)Xar.pX.af,4 p=.oj—o â E E |x-p/W|Sd + (ID £ SI |z-j>/AT|>d IV—s/Af|>ti + E E 52 + I «"(#.?)+ «'(#)I xWl,+ xj,.. | v—g/3f |>d E |i-p/iV|>d = Í1 + a(/".9) I Xjv.pXif., E |l-p/AT|gd + I <*(/»> 9)IXiv.pXjf,« ||f-s/.W|_d I*"(#,?)+»'(«)IXw.pXj,., |»-j/Jf|Si Î3 + Í4, then Si á Tl ¿j \x-p/N\Éd N ¿-I ^N.p^M.q (by (4)) |ji-a/Af|ád M (by (3)) è Ti ¿_i 2-i XjV.pXjlf.j = Tl p=0 j=0 and hence SiHti. The inequalities in (5) imply the inequality M\Mx - pY + N2(My - q)* 2M*N'di > 1 and by (5) again I a(p, q)\ úifi< Vi 2M2NW {M\Nx - pY + N\My - q)2\, License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use 67 BERNSTEIN POLYNOMIALS thus N T2 52 = M ¿ ¿ [M\Nx 2M2iV2d2pTo£5 T2 2MNd2 -p)2+ NKMy - ç)2}Xv.PX^.t (by (3) and (2)) [Mï(1 - x) + Ny(l - y)] and since max [Ma;(l — x) + iVy(l — y)J, =->M + N we have t2(M + tf) 52 á 8MNd* In similar fashion, using (6), (7), (8), and (9), we obtain 1T6 7T3 53 = Collecting 5T4 + B (i,*—») 4Md2 these estimates Proof of the theorem. * 54 á 7T6 + in (11) we obtain 4iV<f2 (10). By Lemmas 1 and 2, we have the inequality (»■*—•) n^imrk+i I n\m{ p=o s=o I \ (n — i) \{m - k + i) \nimh-i) (..*-<)(p + £i ? + t(¿ - *)\ \ m n_¡ m-k+i n { . ti) p-o s=o I (i,k-i) — 4> ,p \ + ."m— k+ «.a / £i q + } _ m n (X, y) > Xn-t,pXm-t+t, ¿(¿ i) ) = Si + S2 We first estimate S2. Let 0(i'*-°(x, y) =^(x, y), then since \p(x, y) is continuous for x and y in R, it is uniformly continuous and bounded on R. That is, for an arbitrary positive number €, there exists a number ¿(e) >0 such that if \x —X\\ ^d(e)/2 and \y—yi\ i=d(e)/2, where Xi and yx are in R, then (12) | *(*!, yx) - *(*, y) | g e/6 License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use 68 E. H. KINGSLEY [February and (13) | t(x, y) I è L<*>, for x and y in R, where Lik) = max *,y£JJ | \¡/(x, y) \. If p, n, i are positive integers such that O^p^n real number such that 0<£<1, then P + ti (14) n —i and if m, q, k, i are positive integers such that and y a real number such that 0 <y < 1, then q + y(k - i) (15) —i, and if £ is a m —k + i m < 0 ^ q ^ m —(k —i), k —i Now if x is fixed and p is such that O^p^n— 1 and |x —p/(n —i)\ èd(e)/2, then by (14) x — d{¿) P+ & and if we choose iVlt > 2i/d(«) + *■ then for n>Nu ¿/« < d(e)/2 and x — (16) In the same manner, P+ Ü if « > Ni«. gd(e) choose 2(¿ - i) Mu >(*-») + ¿(e) then for fixed y and 5 such that O^q^m—k+iand ^d(e)/2, we obtain from (15) ç + y(k - i) (17) m If we choose Xi=(p + ¡-i)/n, yi = (q+y(k d(e) —i))/m (16), (17) we have License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use |y —q/(m —k+i)\ if «> Mu- in (12), then from '95'] p + H q + y(k —i) (18) if n>Nu, 69 BERNSTEIN POLYNOMIALS \ ) - H*,y) n m>Mu, \x-(p+&)/n\£dÇe)/2, \y-(q+y(k~i))/m\ Sd(«)/2. If we now let: An_,- indicate summation for all p such that \x —p/(n —i) £d(e)/2, A£_4 indicate summation for all p such that \x—p/(n —i) >d(e)/2. Am_i+i indicate summation for all q suchthat \y— q/(m —k+i) èd(e)/2, à'm-t+t indicate summation for all q such that \y —q/(m~k + i) >d(t)/2, then S2 may be written as P + É* q + y(k- *)> A-_,' ¿n-i A-.L Am-*+ ■J I m \ - lK*. y) Xn-f.j.Xm.t+i,, P + ¿i g + t(* + £ s \*t*-± ¡»n-»" *)\ m ûm-*+i — ${x, y) K-i,p\m-k+i,( +S an-» p + £¿ E |#(i± ') 9 + y(* - »)> f» am-i+« ./* + a y\i) Xn_,-.pxm_( — w I-' (19) \ + £ X mm-' « /I y ) - iK*. y) ^n-i,P\m~k+i,t + L r LÄ+Ü,î±3ÎLiS) - $ I x, -) x„_f p"m—k+i,q + z z L(,,i±*i^>) Ai I' »»_i .• A„_i..,; ûm-t+i \ m / - iK*> y) Xn—ftpXm_m.jie. License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use 70 E. H. KINGSLEY [February If we use (13) and (18) and let <p + ÍP + £i q + y(k - i) a(P, q) = Ir-(\ m n iK*.y), )- d = ¿(e)/2, Xl = 7T4 = 7T6 = i/6, X2 = T3 = X5 = 2Z/4), then the hypotheses 52^- e of Lemma 3 are satisfied and (19) becomes 3¿<*> / 1 (-H[¿U]2 \n — i + To estímate ,), m — k + i/ for n>Nu,m>Mu. Si, we note that there exist two numbers Nlf>i, Mit >k —i such that if n > N2t, m > Mit, then n\m\ (» — i)\{m — k + i)\nimk~i < 6L<" Thus SiS-^-E ti-^'l (p + & q + y{k-i) E *(— p-o «- »Î I x„_,-, phm~k+i ,q n—£ m—fc+i ==— E 6 p_0 E Xn-i.pXm-jt+i,, by (13) 5=0 and hence Si á e/6. Using these estimates of Si and S2 we have (20) \bL >-*<' I^-^ + ttttt; -:+-nHm — k + [d(e)Y ■\_n — i for n>Nu, Nu; m>Mu, M2l. Let (21) Nu > i +: (22) M3« > (* - f) + 18L<*> and take License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use ij 1951] BERNSTEINPOLYNOMIALS 71 N. = max (Nu, N2„ Ntt), M, = max (Mu, M2„ Ms,). In (21) let »>iV« and such that 3¿<*> [d(e)]>(n-i) € <— 6 and in (22) let m>M, and such that 3LW [d(t)]2(m- Thus, for n>N, and m>M„ k+i) t < — 6 (20) becomes IiSt4>- ¿^ I< « and the theorem is proved. Bibliography 1. S. Bernstein,Soc. Math. Charkow (2) vol. 13 (1912-1913). 2. S. Wigert, Sur l'approximation par polynômes, des fonctions continues, Arkiv för Mathematik, Astronomi och Fysik vol. 22B (1932) pp. 1-4. 3. D. V. Widder, The Laplace transform, Princeton, 1946. Roosevelt College License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
© Copyright 2024 Paperzz