Portfolio theory in terms of partial covariance Alec Schmidt Kensho Technologies Financial Engineering, Stevens Institute of Technology Financial Risk and Engineering, NYU School of Engineering Contents • Main concepts • Why use partial correlations in portfolio theory? • Pearson’s and partial correlations between the US equity ETFs • Performance of the partial covariance based portfolios 1. Main concepts 1.1 Pearson’s correlations Key assumption of the mean-variance theory (Markowitz 1952): Portfolio risk can be described with the covariance matrix 𝜎𝑖𝑗 of asset returns: σp = 𝑖 𝑗 𝑤𝑖 𝑤𝑗 𝜎𝑖𝑗 (1) In (1), w𝑖 is weight of asset 𝑖; 𝑖 =1,2, …, N; N is the number of assets in the portfolio. (2) 𝑖 𝑤𝑖 = 1 Covariance between two asset returns can be expressed in terms of their Pearson’s correlation coefficient ρij 𝜎𝑖𝑗 = ρij 𝜎𝑖 𝜎𝑗 (3) where 𝜎𝑖 2 is variance of return 𝑖. 1. Main concepts 1.1 Pearson’s correlations (continued) Pearson’s correlation coefficient ρij is widely used for describing asset price co-movements (Mantegna 1999, Plerou et al 1999, Cizeau et al 2000, Laloux et al 2000, Forbes & Rigibon 2001, Campbell et al 2008, Podobnik et al 2009, Aste et al 2010, Krishan et al 2010, Pollet & Wilson 2010). Other measures of asset price co-movements, such as concordance (Cashin et al 1999), conditional correlations (Engle 2002), and Gerber statistic (Gerber, Markowitz, & Pujara 2015) have been also explored. Main concepts 1.2 Mean-variance portfolio model Expected portfolio return Rp = 𝑖 𝑤𝑖 E(r𝑖 ) Find 𝑤𝑖 that a) minimize the risk σp for given Rp or b) maximize Sharpe ratio (Rp - Rf)/σp; Rf is a risk-free rate. Some problems: 1. Estimation errors => Equal weight portfolios (DeMiguel et al. 2009). 2. Extreme long and short positions => 𝑤𝑖 ≥ 0 (Jacobs et al 2013). 3. Poor diversification (Green & Hollifield 1992) => 𝑤𝑖 ≥ 𝑤0 > 1. Main concepts 1.3 Partial correlations Pearson’s correlation between two asset prices may be affected by relationships of these prices with some other, common external variable. Partial correlations filter out such relationships (Shapira et al (2009); Kenett et al 2010, 2012, 2014). Partial correlation coefficient, ρij|k, between variables Xi and Xj that is conditioned on variable Xk measures correlation between residuals of linear regressions of Xi on Xk , and Xj on Xk (Johnston & DiNardo 1999). It can be expressed in terms of the Pearson’s correlations: ρ = 𝜌𝑖𝑗 −𝜌𝑖𝑘 𝜌𝑗𝑘 (4) 2. Why to use partial correlations in portfolio theory: a physicist’s view (I) Let’s talk about like-charge attraction for a moment: Coulomb’s law: like charges repel each other, right? Well, not always. Coulomb’s law is valid in a dielectric medium (vacuum included). 2. Why use partial correlations in portfolio theory: a physicist’s view (II) Consider colloid particles in electrolyte: Under some conditions (e.g. large particles with low charges and/or multi-valent counter-ions), colloid particles interact effectively as neutral particles due to complete screening of the particle charges by electrolyte counterions (Schmidt 1987, 1993, 1999, 2001; Livshits & Schmidt 1988; Outhwaite & Molero 1992; Hribar & Vlachy 1997). In order to describe true particle interactions, one should filter out the collective effects caused by particle interactions with the medium. 2. Why use partial correlations in portfolio theory: a physicist’s view (III) According to CAPM, E(ri) = rf + βi (E(rM) - rf) (4) In (4), rf is the risk-free rate of interest, rM is the market return, and βi = cov(ri, rM)/σM2. Practitioners treat the CAPM equation (4) as an empirical regression for estimating asset excess return, αi , and sensitivity of asset return to market return, βi (Grinold & Kahn 1999): ri = αi + βi rM + εi (5) Since the total market return contributes to returns of individual assets, it is natural to expect that the market direction affect correlations between the asset returns. Hence the choice of partial correlations conditioned on entire market (SPY as proxy). 3. Correlations among the US equity ETFs (I) Pearson’s correlations between returns of the US equity sector ETFs and SPY ETF Ticker Sector Pearson's correlation with SPY 2007 2008 2009 2010 2011 2012 2013 XHB Homebuilders 0.68 0.71 0.85 0.84 0.92 0.74 0.75 XLY Consumer Discrete 0.89 0.87 0.92 0.94 0.96 0.90 0.92 XRT Retail 0.82 0.77 0.84 0.84 0.90 0.82 0.82 XLP Consumer Staples 0.79 0.83 0.77 0.87 0.91 0.79 0.79 XLE Energy 0.80 0.84 0.89 0.92 0.92 0.87 0.84 XLF Finance 0.89 0.85 0.89 0.92 0.94 0.90 0.93 XLV Healthcare 0.86 0.84 0.71 0.86 0.94 0.87 0.85 XLI Industrial 0.90 0.91 0.92 0.96 0.98 0.92 0.92 XLB Materials 0.87 0.85 0.89 0.90 0.95 0.88 0.86 XLK Technology 0.86 0.93 0.91 0.94 0.95 0.91 0.83 XLU Utilities 0.71 0.83 0.71 0.83 0.84 0.53 0.65 RWR Real Estate 0.77 0.81 0.86 0.86 0.90 0.71 0.68 3. Correlations among the US equity ETFs (II) Statistics of correlations between returns of the US equity ETFs Pearson’s corr. Partial corr. Year p>0.1 corr < 0 p>0.1 corr < 0 2007 0 0 53.0% 21.2% 2008 0 0 30.3% 30.3% 2009 0 0 33.3% 37.9% 2010 0 0 34.8% 39.4% 2011 0 0 37.9% 39.4% 2012 0 0 37.9% 39.4% 2013 0 0 43.9% 34.8% 3. Correlations among the US equity ETFs (III) Correlation networks Pearson distance: dij = 1 – ρij(k) Pearson’s correlations correlations for 2009 – 2013 Partial 2013 4. Partial correlations - based mean variance portfolio 4.1 General relationships Portfolio partial covariance σp2 = 𝑁 𝑖,𝑗=1 𝑤𝑖 𝑤𝑗 𝜎𝑖𝑗|𝑘 Relationship between partial correlations and partial covariance (Whittaker 1990): σij|k ≡ cov(Xi, Xj | Xk) = cov(Xi, Xj) - cov(Xi, Xk) cov(Xj, Xk)/var(Xk) = ρij|k σi|k σj|k In particular, σi|k2 = σi2 - σik4/σk2 5. Optimal portfolios formed by major US equity ETFs (I) Max Sharpe with wi > 0. Partial correlations yield highly diversified portfolios Year SPY return 2014 0.136 2013 2012 2011 2010 2009 2008 2007 0.255 0.132 0.009 0.123 0.204 -0.45 0.052 Times included Corr. XHB XLY XRT XLP XLE XLF XLV XLI XLB XLK XLU RWR Weights ≥ 1% Pearson 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.25 0.66 3 Partial 0.01 0.11 0.00 0.11 0.08 0.15 0.13 0.11 0.05 0.21 0.33 0.00 10 Pearson 0.00 0.21 0.21 0.00 0.00 0.00 0.52 0.06 0.00 0.00 0.00 0.00 4 Partial 0.00 0.11 0.00 0.11 0.10 0.17 0.13 0.11 0.03 0.21 0.04 0.00 9 Pearson 0.55 0.00 0.00 0.00 0.00 0.00 0.45 0.00 0.00 0.00 0.00 0.00 2 Partial 0.00 0.11 0.00 0.13 0.11 0.14 0.13 0.10 0.03 0.22 0.04 0.00 9 Pearson 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1 Partial 0.00 0.11 0.28 0.07 0.00 0.00 0.18 0.00 0.00 0.04 0.32 0.00 6 Pearson 0.00 0.00 0.95 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 Partial 0.00 0.08 0.00 0.13 0.13 0.16 0.11 0.11 0.02 0.22 0.04 0.00 9 Pearson 0.00 0.00 0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.00 0.00 2 Partial 0.01 0.03 0.05 0.11 0.13 0.12 0.17 0.10 0.03 0.20 0.05 0.01 12 Pearson 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 Partial 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 Pearson 0.00 0.00 0.00 0.38 0.61 0.00 0.00 0.00 0.00 0.00 0.01 0.00 3 Partial 0.00 0.00 0.00 0.16 0.29 0.00 0.00 0.11 0.11 0.24 0.09 0.00 6 Pearson 1 1 3 3 1 0 3 1 0 1 3 1 Partial 2 6 2 8 6 5 6 6 6 7 7 1 5. Optimal portfolios formed by major US equity ETFs (2) Out-of-sample performance of maximum Sharpe portfolios formed by ETFs Calibration window: 36 months starting in Jan 2007 Rebalancing Monthly Yearly Portfolio Return σ Sharpe MDD Return σ Sharpe MDD EWP 0.108 0.147 1.273 0.033 0.113 0.157 0.860 0.063 Pearson 0.130 0.146 1.302 0.033 0.146 0.160 1.097 0.064 Partial 0.108 0.132 1.337 0.030 0.123 0.142 0.862 0.059 Calibration window: 12 months starting in Jan 2007 Rebalancing Monthly Yearly Portfolio Return σ Sharpe MDD Return σ Sharpe MDD EWP 0.065 0.193 0.989 0.043 0.059 0.210 0.610 0.090 Pearson 0.047 0.170 0.897 0.039 0.062 0.216 0.575 0.095 Partial 0.043 0.166 0.929 0.038 0.027 0.191 0.596 0.086 Returns for the 12-month calibration window are due to the fact that the bear market of 2008 is included in its performance statistics but is not included in the performance statistics for the 36-month window. 10/1/2015 7/1/2015 4/1/2015 1/1/2015 10/1/2014 7/1/2014 4/1/2014 1/1/2014 0.80 10/1/2013 0.90 7/1/2013 1.00 4/1/2013 1/1/2013 10/1/2012 7/1/2012 4/1/2012 1/1/2012 10/1/2011 7/1/2011 4/1/2011 1/1/2011 10/1/2010 7/1/2010 4/1/2010 1/1/2010 10/1/2009 7/1/2009 4/1/2009 1/1/2009 10/1/2008 7/1/2008 4/1/2008 1/1/2008 Portfolio weights 5. Optimal portfolios formed by major US equity ETFs (3) One-year calibration window for Pearson correlations 1.10 XLP XLV XLY XRT XLU XLK 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 1/1/2010 3/1/2010 5/1/2010 7/1/2010 9/1/2010 11/1/2010 1/1/2011 3/1/2011 5/1/2011 7/1/2011 9/1/2011 11/1/2011 1/1/2012 3/1/2012 5/1/2012 7/1/2012 9/1/2012 11/1/2012 1/1/2013 3/1/2013 5/1/2013 7/1/2013 9/1/2013 11/1/2013 1/1/2014 3/1/2014 5/1/2014 7/1/2014 9/1/2014 11/1/2014 1/1/2015 3/1/2015 5/1/2015 7/1/2015 9/1/2015 11/1/2015 Portfolio weights 5. Optimal portfolios formed by major US equity ETFs (4) Three-year calibration window for Pearson correlations 1.10 1.00 0.90 XLP XLV XLY XRT XLU 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 10/1/2015 7/1/2015 4/1/2015 1/1/2015 10/1/2014 7/1/2014 4/1/2014 1/1/2014 10/1/2013 7/1/2013 4/1/2013 1/1/2013 10/1/2012 7/1/2012 0.60 4/1/2012 0.70 1/1/2012 0.80 7/1/2011 0.90 10/1/2011 1.00 4/1/2011 1.10 1/1/2011 10/1/2010 7/1/2010 4/1/2010 1/1/2010 10/1/2009 7/1/2009 4/1/2009 1/1/2009 10/1/2008 7/1/2008 4/1/2008 1/1/2008 Portfolio weights XLP XLV XLY XLl XRT XLE XLF XLI XLU XLK SPY price 0.50 SPY price 5. Optimal portfolios formed by major US equity ETFs (5) One-year calibration window for partial correlations 250 200 150 0.40 100 0.30 0.20 50 0.10 0.00 0 9/1/2015 0.60 11/1/2015 0.70 7/1/2015 0.80 5/1/2015 0.90 3/1/2015 1.00 1/1/2015 11/1/2014 9/1/2014 7/1/2014 5/1/2014 3/1/2014 1/1/2014 11/1/2013 9/1/2013 7/1/2013 5/1/2013 3/1/2013 1/1/2013 11/1/2012 9/1/2012 7/1/2012 5/1/2012 3/1/2012 1/1/2012 11/1/2011 9/1/2011 7/1/2011 5/1/2011 3/1/2011 1/1/2011 11/1/2010 9/1/2010 7/1/2010 5/1/2010 3/1/2010 1/1/2010 Portfolio weights 5.Optimal portfolios formed by major US equity ETFs (6) Three-year calibration window for partial correlations 1.10 XLP XLV XLY XLl XRT XLE XLF XLI XLU XLK 0.50 0.40 0.30 0.20 0.10 0.00 6. Conclusions: • Partial correlations increase mean-variance portfolio diversification and yield almost constant asset weights outside bear market. • Partial correlations-based portfolio may outperform Pearson correlation–based portfolio when proper model input parameters (calibration window and rebalancing frequency) are chosen. Q&A
© Copyright 2026 Paperzz