Underground modeling as a tool for impact assessment of productive processes A li ã ddo IImpacto Avaliação t ddos P Processos P Produtivos d ti e Modelos do Ambiente Subterrâneo Jorge Molinero São Paulo. 15-18 Setembro de 2009 Outline Modelingg underground g hydro-bio-geochemical y g processes Quantitative evaluation of impacts Æ Can we believe in models? Some examples of underground impact evaluation: • • • • Mining activities Deep geological repository for Radwaste CO2 storage t Civil engineering facilities Underground HBGQ processes Can we believe in models? All models are simplified versions of the reality and underground models are necesarily over-simplified Æ UNCERTAINTY •CONCEPTUAL UNCERTAINTY Processes I & B conditions Time scale •PARAMETER UNCERTAINTY H Heterogeneity g n y Time scale Upscaling … •MODEL RESULTS (IMPACT ASSESSMENT)) must acknowledge (and quantify if possible) the uncertainty One complex example… Iberian pyritic belt Sotiel Riotinto Tharsis Aznalcóllar Sevilla Huelva ESPANYA Doñana National Park 50 km One complex example… Aznalcóllar ESPANYA 50 km One complex example… Most sludge retired in 4 months. But 0.1 to 5 % remained representing a potential environmental risk. THE QUESTION: THE PROBLEM: Will the lake be affected? Sludge g Unsaturated zone Aquifer Surface water One complex example… • PROBLEM TREE • PROBABILITY OF FAILURE P[CA] = P[AN ] + P[AR] − P[AN I AR] ¿Can we evaluate these probabilities? One complex example… IF NATURAL ATTENUATION WORKS Mine tailing Unsaturated zone F S 2 ( s ) + O2 (aq) + 8 H 2O(l ) → Fe FeS F 2+ (aq) + 2SO42− (aq) + 16 H + (aq) CaCO3 ( s ) + H + ( aqq) ↔ HCO3− (aqq ) + Ca 2+ (aq q) Calcite buffers pH x>H2AsO4 + H2O ⇔ xO>H + AsO43- + 3 H+ x>HAsO4- + H2O ⇔ xO>H + AsO43- + 2 H+ xO>HAsO43- ⇔ xO>H + AsO43xO>Cu+ + H+ ⇔ xO>H + Cu2+ xO>Zn+ + H+ ⇔ xO>H + Zn2+ Aquifer P it dissolves Pyrite di l xO>Pb+ + H+ ⇔ xO>H + Pb2+ Contaminants adsorb on ferrihydrite One complex example… IF NATURAL ATTENUATION FAILS Mine tailing 10 F S 2 ( s ) + O2 (aq ) + 8 H 2O(l ) →9Fe FeS F 2+ (aq ) + 2 SO42− (aq ) + 16 H + (aq ) 8 7 6 5 4 3 2 1 0 0 100 200 P it dissolves Pyrite di l pH pH drops to acidic values Unsaturated zone Contaminants (such as Cu, Zn, Pb, As, etc.) move freely through the unsaturated zone Contaminants reach the aquifer 300 400 Time (days) 1.0E-02 1.0E-04 1.0E-05 1 0E-06 1.0E-06 2+ Aquifer [Cu (a aq)] (mol/L) 1.0E-03 1.0E-07 1.0E-08 1.0E-09 0 100 200 Time (days) C. Domenech, 2002. Ph.D. Thesis 300 400 One complex example… REMEDIATION ACTION Limestone gravel Porosity=0.4 Grain size= 1 cm 8 Q= 0,1 m/d 7 Q= 1 m/d pH p 6 5 Q= 10 m/d 4 0,0 0,2 0,4 0,6 0,8 ( ) Barrier thickness (m) YES! Models can help us to determine probabilities by quantifying f uncertainties Æ PRA Bolster et al. 2009. Probabilistic risk analysis of groundwater remediation strategies . Water Resources Research,, 45 Trinchero et al. 2009. Probabilistic risk analysis of radioactive waste disposal – a case study, Proceedings of American Geophysical Union, Fall Meeting, 2009 1,0 A second complex example… Deep Geological Repository of RadWaste: Canister & Chemical Barrier Engineered Barrier Natural or Geologic Barrier The question: Will the glaciar water reach the repository? (at a given time T) I Skandinavia In Sk di i (S (Sweden) d ) the th scenario i off glaciation l i ti mustt b be evaluated l t d (m) 50 Glaciar Ice Lake Highly diluted water could compromise the stability of the bentonite 0 -800 -1000 Deep Brine > 1.5 Ma 20 Km A second complex example… 100 equally probable streamlines crossing the repository A second complex example… 100 equally probable streamlines crossing the repository A second complex example… 100 equally probable streamlines crossing the repository A second complex example… 100 equally probable streamlines crossing the repository An application example… > CDF at time T More Examples… U d Underground d storage t off CO2 Main risk related to deep storage of f CO2 LEAKAGE Direct emission of CO2 Changes in shallow aquifers More Examples… U d Underground d storage t off CO2 CO2 plays an important role in solubility of metals. metals Possible leakage of CO2 could compromise water resources quality Æ Study and modeling of natural analogues Testing with natural systems EMPORDÀ BASIN 1E-03 measured Fe concentrattion (mol/l) 1E-04 LA SELVA BASIN without Fe(OH)CO3(aq) 1E-05 1E-06 1E-07 1E-08 1E-09 0 10 km with Fe(OH)CO3(aq) More Examples… G Groundwater d t and d Tunnels T l a) Potential hazard and control in advancement rate b) U Urban b areas Æ geotechnical t h i l iimpacts t c) Rural areas Æ water resources and environmental impacts More Examples… G Groundwater d t and d Tunnels T l Barcelona Subway (Línea 9) Æ Groundwater dewatering and ground settlement A few insights for summary… Numerical models provide powerful tools for quantitative impact assessment in the subsurface environment Nature N t is i always l uncertain t i ((subsurface b f nature t even more!). Uncertainty evaluation of model results is a must. P b bili ti approaches Probabilistic h provide id a soundd methodology th d l tto account implicitly for the uncertainties p of qquantitative assessment of Some ppractical examples subsurface environmental impact have been shown: (1) Minigg activities, ((2)) Waste repositories (3) p ( ) Civil Engineering g g works and (4) CO2 storage… Muito M it obrigado obrigado… bi d …
© Copyright 2026 Paperzz