The Oakwood Academy Probability (P1- 7) (Expected outcomes; Relative frequency; Venn and Tree Diagrams) Page 1 The Oakwood Academy Q1. Two bags, A and B, contain numbered counters. A counter is chosen at random from each bag. Here are the 8 counters in bag A. The table gives the probabilities of the numbers on the counters in bag B. Number on counter Probability 6 7 8 9 0.2 0.1 0.4 0.3 Which bag has the greater probability of choosing an even number? You must show your working. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. Answer ...................................................................... (Total 2 marks) Page 2 The Oakwood Academy Q2.Samples are taken from a production line. 500 items are checked in each sample. The relative frequencies of the number of faulty items in 5 samples are shown. Sample A B C D E Relative frequency 0.032 0.04 0.026 0.016 0.028 Work out the range of the number of faulty items in the 5 samples. ................................................................................................................................... ................................................................................................................................... ................................................................................................................................... Answer ...................................................................... (Total 3 marks) Page 3 The Oakwood Academy Q3. On Friday, Greg takes part in a long jump competition. He has to jump at least 7.5 metres to qualify for the final on Saturday. • • He has up to three jumps to qualify. If he jumps at least 7.5 metres he does not jump again on Friday. Each time Greg jumps, the probability he jumps at least 7.5 metres is 0.8 Assume each jump is independent. (a) Complete the tree diagram. (2) (b) Work out the probability that he does not need the third jump to qualify. ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... Answer ............................................ (2) (Total 4 marks) Page 4 The Oakwood Academy Q4.A and B are independent events. Fill in all eight missing probabilities in the diagram below. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. (Total 4 marks) Page 5 The Oakwood Academy Q5. (a) Shade the Venn diagram to show the region (A ⋃ B)′ (1) (b) Shade the Venn diagram to show the region A ⋂ B′ (1) (Total 2 marks) Page 6 The Oakwood Academy M1. 0.2 + 0.4 or 0.6 oe (for bag B) or 0.625 or 62.5(%) (for bag A) M1 0.62(5) or 0.63 and 0.6 and bag A oe both probabilities correct in the same format and bag A A1 [2] M2.0.032 × 500 or A = 16 or 0.04 × 500 or B = 20 or 0.026 × 500 or C = 13 or 0.016 × 500 or D = 8 or 0.028 × 500 or E = 14 M1 0.04 × 500 or 20 and 0.016 × 500 or 8 Selects the frequencies for B and D M1dep 12 A1 Alternative method Page 7 The Oakwood Academy Subtracts any pair of relative frequencies M1 0.04 − 0.016 (× 500) or 0.024 M1dep 12 A1 [3] M3. (a) Q = Qualifies D N Q = Does not qualify B1 0.2 on DNQ branch or All branches included labelled correctly with Q and DNQ but probabilities not all correct B2 (b) Alternative method 1 their 0.2 × their 0.8 or 0.16 Look on tree diagram for working M1 0.96 Page 8 The Oakwood Academy A1 Alternative method 2 (their 0.2)² or 0.04 Look on tree diagram for working M1 0.96 A1 [4] M4. Mark the diagram first and only look in working space if blanks in diagram. P(B) = 0.4 B1 P(Not A) = 0.7 and 1 − their 0.4, and same probabilities on both second branches B1ft Any 1st event and 2nd event probability multiplied together Follow through their values even if 0.7 wrong, but probabilities must be 0 p M1 Page 9 The Oakwood Academy Full correct final probabilities ft their probabilities A1ft [4] M5. (a) Shades the area outside the circles B1 (b) Shades all of A except the intersection with B B1 [2] Page 10
© Copyright 2026 Paperzz