Comment on ”Can we distinguish Richards’ and Boussinesq’s equations for hillslopes?: The Coweeta experiment revisited” by T. S. Steenhuis et al. Christine Michel To cite this version: Christine Michel. Comment on ”Can we distinguish Richards’ and Boussinesq’s equations for hillslopes?: The Coweeta experiment revisited” by T. S. Steenhuis et al.. Water Resources Research, American Geophysical Union, 1999, 35 (11), pp.3573-3573. . HAL Id: hal-01132417 https://hal.archives-ouvertes.fr/hal-01132417 Submitted on 7 Apr 2015 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. WATER RESOURCES RESEARCH, VOL. 35, NO. 11, PAGE 3573, NOVEMBER 1999 Comment on "Can we distinguish Richards' and Boussinesq's equations for hillslopes?: The Coweeta experiment revisited" by T. S. Steenhuis et al. Claude Michel Water Quality and HydrologyDivision,Cemagref,Antony, France In their paper,Steenhuis et al. [1999]showthat Boussinesq's Let V denotethe volumeof water remainingin the slope:V and Richards'equations,when appropriatelysimplified,yield Mo• - M, Vo - Mo•, and Q = dM/dt, then one and the sameanalyticaldescriptionof the flow througha dM I/2 sloping shallow soil hillside. However, both models cannot Q = dt = properly allow for the cumulativeoutflow as measuredduring the Coweeta experiment. More surprisingly,when using a From a lumpedpoint of view a quadraticreservoirbetter fits more precisenumericalintegration,they get farther from the the data than the Darcy-derivedequations.It is interestingto actual cumulative curve. The discrepancy betweenpredictedand actualhydrographs is wide and cannot easilybe explainedwithout rejectingthe Darcy law. Yet the form of the hydrographis easyto describe analytically.If M(t) is the cumulativedrainageandMo• is the total drainage (same notationsas given in Steenhuiset al. [1999]),the followingrelationshipbetter fits the actualcumulative outflowthan (14) or (22) of Steenhius et al. [1999]: note that Benturaand Michel [1997] showedthat a similar conclusioncould be held for the Saint-Venant'sequation which could be replaced,for a whole reach of channel,by a quadraticreservoir(and an additionaltime lag). Consequently, one may questionwhether all these facts do not support a lumped approachof flow dynamicsat the hillslopescale.Is it necessaryto revert to a nonlinear partial derivativeequation that would allowone to derive,after numericalintegration,the samesimplebottom-lineresult? References where z is a parameterthat couldbe equal to about32 hours. Bentura,P. L. F., and C. Michel, Flood routingin a wide channelwith a quadraticlag-and-routemethod,Hydrol. Sci. J., 42(2), 169-189, When derivingwith respectto time, one gets 1997. Moo dM dt Eliminatingt betweenthe two precedingequationsyields aM (Moo- M) 2 dt ,Moo Steenhuis,T. S., J.-Y. Parlange,W. E. Sanford,A. Heilig, F. Stagnitti, and M. F. Walter, Can we distinguishRichards'and Boussinesq's equationsfor hillslopes?:The Coweetaexperimentrevisited,Water Resour.Res.,35(2), 589-593, 1999. C. Michel, Water Quality and HydrologyDivision, Cemagref,Parc de Tourvoie, BP 44, 92163 Antony cedex,France. (claude.michel@ cemagref.fr) (ReceivedMarch 31, 1999;revisedJuly 21, 1999; acceptedJuly 23, 1999.) Copyright1999 by the American GeophysicalUnion. Paper number 1999WR900228. 0043-1397/99/1999 WR900228509.00 3573
© Copyright 2026 Paperzz