The limit of f (x), as x approaches a, equals L written: lim f ( x) L xa if we can make the value f (x) arbitrarily close to L by taking x to be sufficiently close to a. y y f ( x) L a x 3x if x 2 Ex. lim f ( x) where f ( x) x 2 1 if x 2 y lim f ( x) = lim 3x x2 6 3 lim x x 2 3(2) 6 Note: f (-2) = 1 is not involved x2 x -2 Suppose lim f ( x) L and lim g ( x) M xa xa Then, 1. lim f ( x) Lr r xa r , a real number 2. lim cf ( x) c lim f ( x) cL c, a real number xa xa 3. lim f ( x) g ( x) L M x a 4. lim f ( x) g ( x) LM xa f ( x) L f ( x) lim 5. lim xa x a g ( x) lim g ( x) M xa Provided that M 0 x 2 lim1 Ex. lim x2 1 lim x 3 x 3 x3 lim1 lim x 2 x 3 x 3 32 1 10 lim 2 x 1 2 lim x lim1 2x 1 x 1 x 1 x 1 Ex. lim x 1 3 x 5 lim 3 x 5 3lim x lim 5 x 1 x 1 x 1 2 1 1 35 8 . 0 0 x5 Ex. xlim 5 x 2 25 0 Notice form 0 x5 lim x5 x 5 x 5 1 1 lim x 5 x 5 10 Factor and cancel common factors 1 1 For all n > 0, lim n lim n 0 x x x x 1 provided that n is defined. x 5 1 2 2 3x 5 x 1 Divide x x lim Ex. xlim 2 2 2 x by x 2 4x 4 x2 5 1 lim 3 lim lim 2 x x x x x 3 0 0 3 2 04 4 lim 2 lim 4 x x x . 3 The right-hand limit of f (x), as x approaches a, equals L written: lim f ( x) L x a if we can make the value f (x) arbitrarily close to L by taking x to be sufficiently close to the right of a. y f ( x) L a The left-hand limit of f (x), as x approaches a, equals M written: lim f ( x) M x a if we can make the value f (x) arbitrarily close to M by taking x to be sufficiently close to the y left of a. y f ( x) M a . x x 2 if x 3 Ex. Given f ( x) 2x if x 3 Find lim f ( x) x3 lim f ( x) lim 2 x 6 x 3 x 3 Find lim f ( x) x3 lim f ( x) lim x2 9 x3 x3
© Copyright 2026 Paperzz