Document

張衡工數-第 7 次測驗 範圍:級數解(Bessel、Legendre 方程式)
學號:
就讀學校科系:
姓名:
目標:
1. Find the first five nonzero terms of the power series solution of the initial value
problem, about the point where the initial conditions are given:
y  e x y  x2 , y(0)  4 . (15%) 【99 成大光電&交大機械丁(17%)】
3
解: y ( x)  4  4 x  x 
2. Let
1 4 7 5
x  x 
12
60
y be a real function of x . Find two linearly independent Frobenius
solutions of the following differential equation at x  0 :
2x2 y  x( x  3) y  3 y  0
(20%)
【99 台聯大(A)、(C) 、(D) (20%)】
1
1


 1

y  c1 x1  x  x 2     c2 x 2 1  x  x 2   
3
8


 2

3
解:
3. Use the power series method to solve the following equation
(1  x 2 )
where n is a nonnegative integer.

1
(20%)
2
d y
dy
 2 x  n(n  1) y  0
2
dx
dx
【98 中山電機乙&台科化工(15%)】

1
2
4
解: y  c0 1  2 n(n  1) x  4! n(n  2)(n  1)(n  3) x  


1
1

c1  x  (n  1)(n  2) x3  (n  1)(n  3)(n  2)(n  4) x 5 
3!
5!




4. Bessel equation: x2 y  xy  ( x2   2 ) y  0 ;  is real and non-negative;
(20%)
(1) Are x  0 and x  1 ordinary, regular singular or irregular singular point?
(5%)
(2) If   n (integer), using Frobenius method to prove Bessel equation’s
solution y :
(15%)
y  J n ( x)  x

n

m0
(3) If
(1) m x 2 m
22 m  n  m !(m  n)!
  n (integer), Prove: J n ( x)  (1)n J n ( x)
(5%)
【98 暨南電機電子(25%)】
1
張衡工數-第 7 次測驗 範圍:級數解(Bessel、Legendre 方程式)
學號:
就讀學校科系:
姓名:
目標:
解:(1) x  0 為 regular singular point, x  1 為 ordinary point

(1)n a0(n  1)  2n 2 m
(1)n a0n!2n
n
x  x  2m n
x2m
(2) y1  x  2 m  n
m!(m  n  1)
m!(m  n  1)
m 0 2
m 0 2

n
(1) n
x 2 m  AJ n ( x) (其中 A  a 0 n!2 n )
2m n
m!(m  n)!
m 0 2

 Ax n 
(3)  Gamma函數( )之  0
(1) m
 x
 J  n ( x)  
 
m  n m! ( m  n  1)  2 

(1) k  n  x 

 
k  0 ( k  m)! k! 2 

2mn
2k  n
(1) m  x 

 
m  n m!( m  n)! 2 

2m n
(1) k  x 
 (1) 
 
k  0 ( k  m)! k! 2 

, 令mk n
2k  n
n
(1) k
 x
 (1) 
 
k  0 k!( k  n  1)  2 

2k  n
 (1) n J n ( x)
n
即 J  n ( x)  (1) n J n ( x) 得證
5. Let’s denote J v ( x) and Yv ( x) to be the Bessel functions of 1st kind and of 2nd
kind, respectively. I recall you that x2 y  xy  ( x2  v2 ) y  0 is called Bessel’s
equation where v is a real and nonnegative number. Find a general solution for
the ordinary differential equation xy  11y  xy  0 in terms of J v ( x) and Yv ( x) .
[Hint: use the substitution y  x5u in your derivation.]
【99 清大工科(15%)】
(1) n
x 2n  )
n
!

(
n



1
)
n 0
解: y  x 5 c1 J 5 ( x)  c2Y5 ( x) (其中 J  ( x)  

6. Find the power series solutions about 0 for the differential equation.
( x 2  4) y   xy  x  2
(15%)
【98 台大化工(15%)】
解:
y  C 0 (1 
1 3
1 5
1 4
1
1 3 1 4
1 5
x 
x  )  C1 ( x 
x  )  ( x 2 
x 
x 
x )
24
320
48
4
24
96
160
2