Outline • • • • • Block Diagrams M. Sami Fadali EBME Dept. University of Nevada What are block diagrams? Main rules: cascade, parallel, feedback. Interchanging: pickoff, summation. Combining/expanding summing junctions. Examples. 1 2 Block Diagram Notation Block Diagrams • Visual algebra: use block diagram manipulation instead of algebra. • Block: transfer function of a subsystem. • Line: Laplace transform of a variable. • Simplify complex systems to obtain a single equivalent input-output transfer function. 3 4 Cascade (Series) Rule Cascade: No Loading Assumption What is the transfer function of the cascade? G1 ( s )  5 Assumption in Cascading G1 ( s )G2 ( s )  GT (s)  1 sC1 R1  1 sC1  1 ,  R1C1  1s  1 1 G2 ( s )  1  2s 1 , 2  R2C2 6 Buffer Amplifier: No loading. 1  1 2 s 2  ( 1   2 ) s  1 V2 (s) 1   G1(s)G2 (s) 2 Vi (s) 12s  (1 2 )s 1C2 C1 7 8 Parallel Rule Feedback Rule: Proof R(s) E (s) + C (s) G (s)  E ( s )  R ( s )  H ( s )C ( s ) C (s)  G(s) E (s) H (s) 1 E (s)  R( s ) 1  H ( s )G ( s ) T (s)  C (s) G(s)  R( s) 1  G ( s) H ( s) 9 Feedback Control System Feedback Rule R(s) +  10 C (s) Closed- loop system G (s) H (s) T (s)  C (s) G(s)  R( s) 1  G ( s) H ( s) feed-forward gain (transfer function) E ( s )  G1 ( s )R( s )  H 2 ( s ) H1 ( s )C ( s ) C ( s )  G3 ( s )G2 ( s ) E ( s ) E (s) G1 ( s )  R( s ) 1  H 2 ( s ) H1 ( s )G2 ( s )G3 ( s ) Negative Feedback: plus sign open-loop gain (transfer function) 11 feed-forward gain open-loop gain G3 ( s )G2 ( s )G1 ( s ) C (s)  transfer function R ( s ) 1  H 2 ( s ) H1 ( sEquivalent )G3 ( s )G 12 2 (s) Simplify Block Diagram Effect of Pickoff F(s)  G2 ( s )G3 ( s ) 1  H 2 ( s ) H1 ( s )G2 ( s )G3 ( s ) R(s) R(s) G1(s) G2 ( s )G3 ( s ) 1  H 2 ( s ) H1 ( s )G2 ( s )G3 ( s ) G1 ( s )G2 ( s )G3 ( s ) 1  H 2 ( s ) H1 ( s )G2 ( s )G3 ( s )  C (s) CANNOT use the feedback formula since E(s) is needed. C (s) 13 14 Interchange Order of Blocks and Branching Interchange order of Blocks and Summing Junction 15 16 Combining/Expanding Summing Junctions R1(s) + + - + + Problem Solution: 3 Basic Rules C(s) R(s) Cascade R2(s) R3(s) + G(s)  H(s) R4(s) R(s) R1(s) C(s) Feedback + R3(s) G ( s) 1  G(s) H (s) C(s) + R2(s) C(s) - R4(s) 17 Parallel •If necessary, interchange. •Apply one of the 3 rules. 18 Simplify Example 5.1 19 20 Move Pickoff Point Example H2 H2 R + + + - G1 + G2 + C G3 R Move pickoff + + + - G1 + + G2 1/G3 H1 H1 C G3 21 22 Cascade Rule Feedback Rule H2 R + G1 + + + + - + + - R C G2G3 G1 + G 2G 3 1  H 2G 2G 3 H1 H1 C 1/G3 1/G3 23 24 Cascade Rule R + G 1G 2 G 3 1  H 2G 2G 3 + - Parallel Rule + H1 1 G1G2G3 1  H 2 G 2 G3 R + C  1 1/G3 C H1 G3 H1 G3 25 Feedback Rule 26 Example Move pickoff T (s)  C (s) R( s) G1G2G3 1  H 2G2G3   G1G2G3  H1  1   1    1 H G G G 2 2 3  3   V4 ( s )  G2 ( s )V3 ( s ) V3 ( s )  27 1 V4 ( s ) G2 ( s ) 28 Two Feedback Loops Book: Move Block 1/G2(s) 1/G2(s) Easier: Use feedback rule V4 (s) G 2 (s)  V2 (s) 1  G 2 (s)H 2 (s) 29 Feedback Rule 30 Combine Summing Junctions 1/G2(s) 1/G2(s) 31 32 Parallel Rule Can we use parallel rule? 1/G2(s) 1/G2(s) 33 Expand Summation 34 Parallel Rule 1/G2(s) 35 36 Feedback Rule R G1G2 H  1  G1G2  2  H1   G1  1 1 G2 Simplify G3 1  G3 H 3 C R G1G2 1  G2 H 2  G1G2 H1 1  G2 G2 G3 1  G3 H 3 C 37 Cascade Rule 38 Motor with Feedback E m ( s )  K e s ( s ) Ia  R G1 (1  G2 )G3 1  G2 H 2  G1G2 H1 1  G3 H 3  Ea ( s )  Em ( s ) La s  Ra  R C B J 1 s Kt 1 Ia s Js  B  ( s )  ( s )   E a ( s )  K a Ec ( s ) Ec ( s )  Er ( s )  RI a ( s ) 39 40 Block Diagram Move Gain Block E m ( s )  K e s ( s ) E a ( s )  K a Ec ( s ) Ia  Ea ( s )  E m ( s ) La s  Ra  R ܧ ܭ 1 s Kt 1 Ia s Js  B  ( s )  ( s )   Ec ( s )  Er ( s )  RI a ( s ) ܭ Combine summing junctions 41 42 Feedback Loop 1 La s  Ra  R ܭ G1 ( s )   Feedback Loop Ia G1 ( s ) G2 ( s ) ܴ 1  La s  Ra  R  1  1  K a R  La s  Ra  R  La s  Ra  R  K a R  ( s) G1 ( s )G2 ( s ) 1    Ka Er ( s ) s 1  K eG1 ( s )G2 ( s ) 1 La s  Ra  R1  K a  43 44
© Copyright 2025 Paperzz