ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 2 1 Overview This set of notes treats circular polarization, obtained by using a single feed. y L» W y0 » x0 W (x0, y0) x L 2 Overview Goals: Find the optimum dimensions of the CP patch Find the input impedance of the CP patch Find the pattern (axial-ratio) bandwidth Find the impedance bandwidth of CP patch 3 Amplitude of Patch Currents y L W ( x0 , y0 ) I h w r x I 1 [ A] First Step: Find the patch currents (x and y directions), and relate them to the input impedance of the patch. 4 Amplitude of Patch Currents (cont.) y L W ( x0 , y0 ) I h w r x I 1 [ A] x ˆ x-directed current mode (1,0): J x Ax sin L x s æπy ÷ ö ç y-directed current mode (0,1): J = ˆy Ay sin ç ÷ ÷ çèW ø y s 5 Amplitude of Patch Currents (cont.) The x mode (TM10): J s nˆ H zˆ H so J sx H y æπx ÷ ö H = ˆy Ax sin çç ÷ çè L ÷ ø To find E, use H j E H y H x 1 x Ez Ax cos j 0 r x y j 0 r L L 1 6 Amplitude of Patch Currents (cont.) V Z in = = V = - hEz = - h (Ezx + Ezy ) = Z inx + Z iny I For the (1,0) mode we have or jh x0 Z Ax cos 0 r L L x in 0 r L Zinx Ax x0 j h cos L A similar derivation holds for the y mode. 7 Amplitude of Patch Currents (cont.) The y mode (TM10): 0 rW Ziny Ay y0 j h cos W The patch current amplitudes can then be written as: Ax A1 x Z inx where x A1 y Ay A1 Z iny 0 r L 1 x0 j h cos L A1 y 0 rW y0 j h cos W 1 8 Amplitude of Patch Currents (cont.) x A1 0 r L 1 x0 j h cos L y A1 0 rW y0 j h cos W 1 y Assume L W x0 y0 Then x 1 A y 1 A W A1 (x0, y0) x L 9 Amplitude of Patch Currents (cont.) Because of the nearly equal dimensions and the feed along the diagonal, we also have Rx R y R (The resistance in the circuit model for either mode is the same.) Ri = resonant input resistance of the mode i, when excited by itself (Rx only depends on x0, Ry only depends on y0). We then have: where A2 A1R Ax A2 Z inx Ay A2 Z y in A2 0 r L R x0 j h cos L Reminder: The bar denotes impedances that are normalized by R (either Rx or Ry). 10 Amplitude of Patch Currents (cont.) The A2 coefficient can be written as 0 r L R A2 x0 j h cos L 2 x0 Redge cos L L 0 r x0 j h cos L so x0 0 r L A2 Redge cos L j h 11 Circular Polarization Condition y Let L = W (1+ δ) y0 = x0 W (x0, y0) x L The CP condition is Ay j Ax = amplitude of x mode Ax Ay = amplitude of y mode - for RHCP + for LHCP 12 Circular Polarization Condition (cont.) The frequency fCP is defined as the frequency for which we get CP at broadside. f fCP f We have: fx A2 Ax 1 j 2Q f rx 1 A2 Ay 1 j 2Q f ry 1 fy where f rx f fx f ry f fy fx = resonance frequency of (1,0) mode fy = resonance frequency of (0,1) mode 13 Circular Polarization Condition (cont.) LHCP: Ay Ax Choose: 1 f rx 1 2Q 1 f ry 1 2Q j at f fCP Then we have A Ax 1 j A Ay 1 j 1 j Ax 1 j Ay 2e 2e j 4 j e j 2 j 4 (LHCP) 14 Circular Polarization Condition (cont.) The frequency conditions for f = fCP can be written as: 1 f rx 1 2Q fCP 1 1 fx 2Q fx 1 1 fCP 2Q 1 f ry 1 2Q fCP 1 1 fy 2Q fy fx f y so fCP or fCP fCP 1 1 2Q 2 1 fx f y 2 15 Circular Polarization Condition (cont.) Also, fy fx 1 = fCP fCP 2Q Let æ 1 ö 1 ÷ çç÷ = ÷ çè 2Q ÷ ø Q f f y f x f 1 f CP Q Then we have fCP 2Q fCP fCP 2Q f fx fy 16 Circular Polarization Condition (cont.) Summary of frequencies 1 f x fCP 1 2 Q 1 f y fCP 1 2 Q (LHCP) 1 f x fCP 1 2 Q 1 f y fCP 1 2 Q (RHCP) fCP = frequency for which we get CP at broadside. 17 Patch Dimensions for CP W L r L PMC L r PMC L f h, r ,W (Hammerstad formula) 18 Physical Dimensions for CP (cont.) L f h, r ,W Le L 2L k0 r L e (resonance condition) Let k0 x 2 f x 0 0 k0 y 2 f y 0 0 (known wavenumbers) 19 Physical Dimensions for CP (cont.) k0 x L 2L r k0 x Le r Similarly, we have k0 y W 2W r Hence L W k0 x r k0 y r 2 L h, r , W 2 W h , r , L Note: For W, we use the same formula as L , but replace W L. 20 Physical Dimensions for CP (cont.) Since the patch is nearly square, the two fringing extensions are nearly equal (L W). Hence we have L W k0 x r k0 y r where 2 L 2 L k0 x 2 f x 0 0 k0 y 2 f y 0 0 (known wavenumbers) Note: The fringing length L depends on W, so these equations must be solved numerically (using, e.g., iteration). 21 Hammerstad’s Formula W 0.262 h re 0.300 L 0.412h W 0.258 0.813 re h æεr + 1ö æεr ÷ ç çç εre = ç + ÷ ÷ èç 2 çè 2 ø 1ö÷ ÷ ø÷ 1 1 + 12 h W 22 Input Impedance of CP Patch R R Z in f Z f Z f 1 j 2Q f rx 1 1 j 2Q f ry 1 x in At fCP: so or y in f rx 1 1/ (2Q) and f ry 1 1/ (2Q) (LHCP) R R Z in f 0 1 j 1 j R (1 j ) R (1 j ) R (1 j ) R (1 j ) (1 j )(1 j ) 2 Z in R Recall: R = Rx = R for TM10 mode The CP frequency fCP is also the resonance frequency where the input impedance is real (if we neglect the probe inductance). 23 Input Impedance of CP Patch Hence, at the resonance (CP) frequency fCP we have x0 Z in Redge cos L 2 Redge = Redge for TM10 mode y Note: We have a CAD formula for Redge. W (x0, y0) x The fed position x0 can be chosen to give the desired input resistance at the resonance frequency fCP. L 24 CP (Axial Ratio) Bandwidth We now examine the frequency dependence of the term Ay / Ax . Ax A2 1 j 2Q f rx 1 Ay A2 1 j 2Q f ry 1 1 j 2Q( f rx 1) Ax 1 j 2Q( f ry 1) Ay where f f rx fx f 1 1 (LHCP) f 2 Q 1 CP fCP 1 2 Q f 25 CP Bandwidth (cont.) Define Then Similarly, fr f f CP This is the ratio of the operating frequency to the CP frequency. 1 f rx f r 1 2Q f ry 1 f r 1 2Q 26 CP Bandwidth (cont.) Hence æ æ ö 1 ö ÷ ç ÷ ç 1 + j 2Q çç f r ç1 + - 1÷ ÷ ÷ ÷ ç ÷ ÷ ç 2 Q Ay 1 + j 2Q ( f rx - 1) è ø è ø = = æ æ 1 ö ÷ ö Ax 1 + j 2Q ( f ry - 1) ç ÷ ç 1 + j 2Q çç f r ç1- 1÷ ÷ ÷ ÷ ç ÷ ø ÷ çè è 2Q ø Note: Let Then fr 1 Ay Ax 1 j j 1 j x 2 Q f r 1 1 j (f r x) 1 j (1 x) Ax 1 j (f r x) 1 j (1 x) Ay 27 CP Bandwidth (cont.) 1 j (1 x) Ax 1 j (1 x) Ay x 2 Q f r 1 y B fr f f CP E(t ) x A A AR B 28 CP Bandwidth (cont.) From ECE 6340: AR cot where sin 2 sin(2 ) sin tan 1 Ay Ax Ay arg Ax In our case, tan 1 1 (1 x) 2 1 (1 x) 2 tan 1 (1 x) tan 1 (1 x) 29 CP Bandwidth (cont.) Set AR 2 From a numerical solution: AR 3 dB x 0.348 30 CP Bandwidth (cont.) Hence 2Q f r 1 0.348 0.348 fr 1 2Q so 0.348 2Q 0.348 1 2Q f r 1 f r 0.348 Therefore, f r f f Q r r Hence, we have BW AR CP f f f r f r fCP BW AR CP 0.348 Q 31 Impedance Bandwidth Z in f R R 1 j 2Q f rx 1 1 j 2Q f ry 1 R R 1 1 1 j 2Q f r 1 1 1 j 2Q f r 1 1 2Q 2Q R R 1 j (f r x) 1 j (f r x) R R 1 j (1 x) 1 j (1 x) where Note: At x = 0 we have Zin = for f r 1 x 2Q f r 1 R R + = R 1 + j 1- j 32 Impedance Bandwidth (cont.) Zin 1 1 Zin R 1 j (1 x) 1 j (1 x) Zin Z0 Zin R Zin 1 Zin Z0 Zin R Zin 1 S SWR Set 1 1 S S0 2 (bandwidth limits) x0 2 (derivation omitted) 33 Impedance Bandwidth (cont.) Hence 2Q f r 1 2 so 2 fr 1 2Q The band edges (in normalized frequency) are then 1 f 1 2Q 1 fr 1 2Q r 34 Impedance Bandwidth (cont.) BW Hence Hence imp CP f f f r f r fCP 1 2 2Q BW imp CP BW imp CP 2 Q 35 Summary BW AR CP 0.348 Q CP antenna BW Linear antenna BW imp CP imp Lin 2 1.414 Q Q 1 0.707 Q 2Q 36
© Copyright 2026 Paperzz