SECTION 5-5A Part I: Exponentials base other than e Variables in the exponent Logarithmic differentiation is used to find derivatives of exponential functions: 1) Which if these is an exponential function? a) c) y2 x yx x b) y 10 d) y sin x sin x x2 Bases other than e Definition of exponential function with base a Let a be a positive real number where a ≠1 and let x be any real number, then the exponential function to the base a is defined by: a e x ln a x Properties a) a 1 b) a a a 0 x y x y x c) d) a x y a y a a x y a xy Definition of logarithmic function with base a Let a be a positive real number where a ≠1 and let x be any real number, then the logarithmic function to the base a is defined by: log x log a x log a Change of base formula Properties a) log a 1 0 b) log a xy log a x log a y c) log a x n log a x d) x log a log a x log a y y n Differentiate 2) y6 2x Derivatives for bases other than e Let a be a positive real number where a ≠1 and let u be a differentiable function of x such that: x I. da a x ln a dx II. d au du u a ln( a) dx dx Derivatives for bases other than e Let a be a positive real number where a ≠1 and let u be a differentiable function of x such that: Proof pg 364 III. IV. d 1 log b x dx x ln( b) d u' log b u dx u ln( b) Differentiate 3) y 10 sin x Differentiate 4) 5) y x 2 (7 3 x ) y 2 x 2 PRODUCT RULE Differentiate 6) y log 10 (3x 1) Differentiate 7) yx x Careful: not the power rule! ln y x ln x 1 dy 1 1 ln x x y dx x dy x x ln x 1 dx Differentiate 8) y log 7 x( x 3 4)5 y log 7 ( x) 5 log 7 x 3 4 Differentiate 9) x y log 8 2 x 1 y log 8 ( x) log 8 ( x 2 1) 1 2x y ln( 8)x ln( 8)(x 2 1) Through the magic of math: x2 1 y ln( 8) x( x 2 1) Assignment Page 368 # 41-48, 51- 60, 6365, and 67 all
© Copyright 2026 Paperzz