Name

Name __________________________________
Date ___________________
LESSON 4.4
Practice C
For use with pages 240–247
Decide whether enough information is given to prove that the triangles are
congruent. If there is enough information, state the congruence postulate or
theorem you would use.
1. ABC, FEC
2. GHI, JKL
3. MNO, PQR
4. STX, VUW
State the third congruence that must be given to prove that ABC  FED using the
indicated postulate or theorem.
5. GIVEN: BC  ED, AC  FD , __?__  __?__ Use the SAS Congruence Postulate.
6. GIVEN: AB  FE , AC  FD , __?__  __?__ Use the SSS Congruence Postulate.
7. GIVEN: BC  ED,  B is a right angle and  B   E, __?__  __?__Use the HL
Congruence Theorem.
8. Suppose P is the midpoint of OQ in OQS. If SP  OQ , explain why
SPO = SPQ.
Name __________________________________
Date ___________________
LESSON 4.4
Practice C continued
For use with pages 240-247
9. Proof Complete the proof.
GIVEN: QS  PR , PS  RS , QR RS
PROVE: PRS  QSR

Statements
1. QS  PR ,
Reasons
1. Given
2.
2. Given
PS  RS , QR RS
3.  S and  R areright angles.
4. __?__
RS  SR
6. PRS  QSR
5.
3. __?__
4. Definition of a right triangle
5. __?__
6. __?__
10. Proof Complete the proof.
GIVEN: OM  LN , ML  MN,
PROVE: OML  OMN R
Statements
1. OM  LN
2. __?__
3. __?__
4. ML  MN
Reasons
1. Given
5. OM OM
6. OML  OMN
5. __?__
6. __?__
2. If 2 angles are , then they form 4 right s.
3. Right Angle Congruence Theorem
4. __?__