L05 Choice Problem: We know preferences (utility function) U ( x1 , x2 ) ln x1 ln x2 and p1 1, p2 1, m 10 We want to know optimal choice * 1 * 2 (x , x ) Choice U ( x1 , x2 ) ln x1 ln x2 p1 1, p2 2, m 10 MU 2 p2 MU 1 p1 $ $ $ $ $ $ $ $ $ $ Choice: geometric solution x2 x1 Abstract approach In the example we were given U ( x1 , x2 ) ln x1 ln x2 p1 1, p2 1, m 10 we found demands - two numbers x1 5, x2 5 Now we use abstract parameters U ( x1 , x2 ) p1 , p2 , m we find demand functionsNow we x1 ( p1 , p2 , m) 4 types of preferences x2 ( p1 , p2 , m) Abstract Cobb Douglass Function Cobb Douglass utility functions U ( x1 , x2 ) x x a b 1 2 and V ( x1 , x2 ) ln U ( x1 , x2 ) are equivalent in terms of preferences Abstract Cobb Douglass Function U ( x1 , x2 ) x x a b 1 2 V ( x1 , x2 ) a ln x1 b ln x2 Magic (Cobb-Douglass) formula U ( x1 , x2 ) a ln x1 b ln x2 Parameters: a, b, p1 , p2 , m p1 , p2 , m Cobb-Douglas: Summary a b V a ln x b ln x U x Utility function: 1 2 or 1 x2 Solution: a m b m * * x1 , x2 a b p1 a b p2 Shares of income and p1 2, p2 4, m 40 A) Let U x x 0 .5 0 .5 1 2 px ,p x x ,x * 1 1 * 2 2 * 1 * 2 B) Let U x x 10 20 1 2 and p1 10, p2 10, m 900 p1 x1* , p 2 x2* x1* , x2* Interiority Cobb – Douglass (always interior solution) MU 1 p1 MU 1 lim xi 0 MU 2 p2 Cobb- Douglass preferences x2 x1 SOH (Perfect Complements) U ( x1 , x2 ) min( x1 , x2 ) p1 1, p2 1, m 10 SOH (Perfect Complements) U ( x1 , x2 ) min( 2 x1 , x2 ) p1 1, p2 1, m 10 Perfect Complements (SOH) U ( x1 , x2 ) min( ax1 , bx2 ) Interior or corner solution? p1 , p2 , m Is solution always interior? Not necessarily Even with well behaved preferences we might have a corner solution Example: Perfect Substitutes Perfect substitutes U ( x1 , x2 ) x1 x2 p1 1, p2 2, m 10 MU 2 p2 MU 1 p1 $ $ $ $ $ $ $ $ $ $ Perfect Substitutes U ( x1 , x2 ) x1 x2 p1 1, p2 2, m 10 x2 x1 Magic (Substitutes) Formula U ( x1 , x2 ) ax1 bx2 p1 , p2 , m Choice U ( x1 , x2 ) x1 20 ln x2 p1 1, p2 1, m 10 MU 2 p2 MU 1 p1 $ $ $ $ $ $ $ $ $ $ Is solution interior? 1) 2) m Hence demand x 0 and x p2 MU 1 MU 2 MU 1 p1 | MRS | p1 p2 MU 2 p2 * 1 * 2 Geometric interpretation How to solve for corner solution? Find a buddle using standard conditions If some xi 0 then in optimum xi* 0 Choice: Calculation U ( x1 , x2 ) x1 20 ln x2 p1 1, p2 1, m 10 In Practice Cobb-Douglass, Perfect Complements? Quasilinear ? Perfect Substitutes?
© Copyright 2026 Paperzz