Name ________________________________________ Date __________________ Class__________________ LESSON 10-3 Reading Strategy Use a Visual Map The unit circle shown at right has a radius of 1 unit. So the terminal side of each angle has a length of 1 unit. As shown in the diagram below, that corresponds to the hypotenuse of a right triangle. The ordered pair shows the length of each side of the triangle. Notice the ordered pairs for the points at 0°, 90°, 180°, and 270°. On the circle, for every value of θ, sin θ = y y = =y r 1 cos θ = x x = =x r 1 tan θ = y x Use the unit circle to answer each question. 1. Express 360° in radians. ________________________ 4. 2. What is sin 360°? _________________________ 3. What is cos 360°? ________________________ a. In which quadrant does the terminal side of a 150° angle lie? ____________________ b. Express 150° in radians. ____________________ c. What point does the terminal side of an angle of 150° pass through on the unit circle? ____________________ d. Which coordinate of the ordered pair represents sin 150°? ____________________ e. Which coordinate of the ordered pair represents cos 150°? ____________________ f. Write an expression for tan 150° and simplify. ____________________ Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. 10-26 Holt McDougal Algebra 2 15. 3 16. 17. 2 2 ;− ; −1 2 2 18. 1 3 3 ;− 19. − ; 2 2 3 2 2 ;− ;1 2 2 21. − 7. 30° 1 3 3 ;− ;− 2 2 3 9. 45° 3 1 ; ; 3 2 2 20. − 2 2 2 cos 45° = 2 10. sin 45° = 3 1 ;− ; 3 2 2 tan 45° = 1 22. 2073 mi 2 2 2 cos 315° = 2 tan 315° = −1 11. sin 315° = − Practice C 5π radians 2 1. −270° 2. 3. 50° 4. − 5. 315° 6. −330° 35π 7. radians 18 8. 63° 9. π radians 15 10π radians 9 12. − 7π radians 12 1 3 3 13. − ; ;− 2 2 3 14. − 2 2 ; ; −1 2 2 15. − 17. − 19. 3 1 ;− ; 3 2 2 16. 2 2 ;− ;1 2 2 18. 2 2 ; ;1 2 2 1 3 3 ;− 21. − ; − 2 2 3 23. − 3 1 ; ;− 3 2 2 Challenge 1. 6080 ft 2. 1,600,921 mi; 66,705 mi/h 3. Area of circle = πr 2; A sector whose central angle has a measure of θ radians has an θ times the area of the circle. So 2π θ 1 Area of sector = πr 2 = θr 2 . 2π 2 10. 234° 37π radians 30 11. area of ( ) 4. 3 1 ;− ;− 3 2 2 b. θ = 2 2 ; ; −1 2 2 3. 4 radians 7π radians 6 5. 240° 2. 2π π or 6 3 π π ⋅ 2 3 = π2 6 e. Yes; possible answer: because the arc length of the fragment is very close to the arc length that would be expected for a plate of diameter π 2 2 ;− ; −1 2 2 2. 5π radians 6 4. − 2 d. 1.64 in. Reteach π π c. S = r θ = 25. 138 ft 1. − 4 1. a. r = 20. 0; −1; 0 24. π Problem Solving 1 3 3 ;− ;− 2 2 3 22. − 8. 300° 2π radians 3 1 4 3. C 4. H 5. B 6. F Reading Strategy 6. −270° 1. 2π 2. 0 Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. A35 Holt McDougal Algebra 2 3. 1 14. 71.8° 4. a. Quadrant II 16. 11° north of east b. 5π 6 Practice B ⎛ 3 1⎞ , c. ⎜ − ⎜ 2 2 ⎟⎟ ⎝ ⎠ d. 1 2 3 2 1 2 − 3 2 =− 3 3 4. 5. 6. π 4 π 3 3π 5π + 2π n; + 2π n 4 4 7π + 2π n 6 5π ; 300° 3 π 3 7. 3π ; 270° 2 9. 0; 0° 11π ; 330° 6 ; 60° 11. ; 45° 13. 26.7° 16. 109.5° 17. 259.6° 18. 95.7° 19. 71° + 2π n; 5π + 2π n 3 + 2π n; 5π + 2π n 4 + 2π n; 2π + 2π n 3 7π ; 315° 4 π 4 Practice C 1. 2. π 3 ; 60° 3 π 4 + 2π n; 2π + 2π n 3 + 2π n; 7π + 2π n 4 2π 5π + 2π n; + 2π n 3 3 4. 3π 5π + 2π n; + 2π n 4 4 5. 9. π 3. π 6 + 2π n; 5π + 2π n 6 6. 3π 7π + 2π n; + 2π n 4 4 5π ; 300° 3 ; 30° 11. 7π ; 315° 4 7. 12. π; 180° 13. 3π ; 270° 2 9. 6 6 + 2π n; 15. 247.5° b. 0 radians, 0° 10. π 14. 233.2° 2π 4π + 2π n; + 2π n 3 3 π 5. 5π 7π + 2π n; + 2π n 6 6 7. a. I and IV 8. 5π 7π + 2π n; + 2π n 4 4 12. 5π + 2π n; + 2π n 2. 6 6 3 4. 5π 7π ; 6 6 π π 2π 4π + 2π n; + 2π n 3 3 10. Practice A 3. 2. 8. FUNCTIONS b. 4π 5π + 2π n; + 2π n 3 3 6. 10-4 INVERSES OF TRIGONOMETRIC 1. a. 1. 3. 0 + 2π n; π + 2π n e. − f. 15. 281.5° π 6 ; 30° 8. 10. 2π ; 120° 3 π 2 ; 90° Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. A36 Holt McDougal Algebra 2
© Copyright 2026 Paperzz