SECTION 3-1 Extrema Maximum and Minimums Critical Values • Where the derivative is zero or the function does not exist. Extrema: Let f be defined on the interval (a,b) containing the point c. 1. f(x) has a maximum at x = c if f(c) ≥ f(x) for all x in (a,b) • Changes from increasing to decreasing • Horizontal tangent Extrema: Let f be defined on the interval (a,b) containing the point c. 2. f(x) has a minimum at x = c if f(c) ≤ f(x) for all x in (a,b) • • Changes from decreasing to increasing Horizontal tangent Extreme Value Theorem • If f(x) is continuous on a closed interval, then f has both a minimum and maximum (may be the endpoints) Max (-2,4) Min (7, -0.5) Two types 1. Relative: the curve has a horizontal tangent line at the point, but it is not the highest or lowest point (local) 2. Absolute: either a horizontal tangent or an endpoint w here the curve reaches its highest or lowest value (Global) Determine from the graph whether f has relative minimums, relative maximums, absolute minimums, or absolute maximums on the closed interval Absolute max Relative max Relative max Relative min Absolute min 1) Show that x2 f ( x) 2 x 4 has a minimum at (0,0). Find the value of the derivative at the min. x f ' ( x) 2 x 4 2 x x 2 2 x 2 4 2 4 ( 0 ) 0( 2 ) f ' ( 0) 42 f ' ( 0) 0 2.) Show that f ( x) ( x 2) 2 3 has a minimum at (-2,0). Find the value of the derivative at the min. 2 1 f ' ( x) x 2 3 1 3 2 1 f ' (2) 2 2 3 3 f ' (2) 2 und 3(0) f ' (2) d .n.e. Cusp Derivatives and Extrema: Critical Numbers: the value c contained in the interval that gives an extrema such that 1. 2. f (c) 0 f (c ) does not exist 3. Endpoints (if given from closed interval) Derivatives and Extrema: Critical Numbers: find the x-value of the point Critical Points: find the x-value and the y-value of the point (x,y) 3 2 f ( x ) 2 x 3 x 3.) Find the critical numbers for f ' ( x) 6 x 6 x 0 2 6xx 1 0 6x 0 x0 x 1 0 x 1 4.) Find the critical numbers for f ( x) 4 x 2 f ( x) 4 x 2 1 2 x 1 f ' ( x) 4 x 2 2 f ' ( x) x0 x0 1 2 x 4 x 2 max& min 2 1 2 dne 4 x2 0 4 x 0 2 2 4 x2 0 x2 4 x 2 5.) Find the critical numbers when f ' ( x) 2 sin x cos x 2 cos x 2 sin x cos x 2 cos x 0 2 cos xsin x 1 0 2 cos x 0 sin x 1 0 cos x 0 sin x 1 x 2 x 3 2 3 x 2 6.) Find the absolute extrema for 2 f ( x) x 3 on [-1,2] plot the points (1, 1), 0, 0 , 2, 1.587 2 13 f ' ( x) x 3 f ' ( x) 2 33 x max& min dne endpoints 20 33 x 0 f (1) 1 3 1 x0 f (2) 2 3 1.587 f ( 0) 0 2 2 2 3 0 ∴ ab max 2,1.587 , ab min 0,0 By the Extreme Value Theorem 7.) Find the absolute extrema for 1 f ( x) on [-3,1] 2 1 x f ( x) 1 x 2 1 f ' ( x) 1 1 x f ' ( x) 2x 2 2 2x 1 x 2 2 dne endpoint 2x 0 1 x x0 1 x2 0 max& min f (0) 1 1 1 1 02 1 2 2 x2 1 x 1 0 1 1 1 (3) 2 10 1 1 f (1) 1 12 2 f (3) Homework Page 169 # 1-10 (use instructions for 7-10) # 11, 12, 17,19, 20, 23, 25, 33, 35, 43, 44, 45, 54, and 57-60 Worksheet 3-A
© Copyright 2026 Paperzz