Lecture 13: Sequence components (Tutorial) 1. Fig. 13.1 shows the single line diagram of a 13.8kV system connected to a 480V bus through a 13.8k/480V transformer. Two motor loads of 400hp and 600hp are connected to the bus through three parallel conductor copper cables. If a 3 phase bolted fault occurs at F1 and F2 , compute the fault currents. Ans: Let us take base power as 1000kVA and base voltage as 480V. kVA 1000 Then base current 3 base voltage 1000 1000 1202.8 A 3 480 Base voltage ( per phase) 480 3 Base impedance Base current 1202.8 0.2304 Now, we have to convert all important element into per unit values on a common base. Here the important base is short circuit contribution from 13.8kV source = 600MVA 600 10 6 Short circuit current 25102 A 3 13.8 10 3 X ratio = 15 R base kVA 1000 Zs 0.00166 pu short circuit kVA 600 10 3 Xs 15 Z s Rs2 X s2 Z s2 Rs2 X s2 Rs i.e. (0.00166) 2 Rs2 (15 Rs ) 2 Rs 0.00011 pu X s 0.00165 pu i.e. Z s in pu = 0.00011 + j0.00165 1000kVA Transformer. ZT = 5.75% RT = 1.21% %RT base kVA The per unit value of RT Transformer kVA 100 1000 1.21 0.0121 pu 1000 100 1000 5.75 0.0575 pu Per unit value of ZT 1000 100 XT Z T2 RT2 0.0562 pu i.e. ZT in pu = 0.0121 + j0.0562 Cable C1 Length of cable C1 500m , Resistance of one conductor per km = 0.178 Reactance of one conductor per km = 0.108 Since, three conductors are in parallel, equivalent resistance and reactance for 500m length is given by, 0.178 500 Rc1 0.0297 3 1000 0.108 500 X c1 0.018 3 1000 Converting Rc1 and X c1 , into per unit, Actual value 0.0297 Rc1 in pu base value 0.2304 0.129 0.018 0.078 X c1 in pu 0.2304 i.e. Z c1 in pu = 0.129 + j0.078 Cable C2 Length of cable C2 300m Resistance of one conductor per km is given as 0.181 and reactance / km is given as 0.124 . Since, three conductors are in parallel, equivalent resistance and reactance for 300m cable is given by, 0.181 300 Rc 2 0.0181 3 1000 0.124 300 X c2 0.0124 3 1000 Converting into pu 0.0181 0.0786 pu Rc 2 in pu 0.2304 0.0124 0.0538 pu X c 2 in pu 0.2304 i.e. Z c 2 in pu = 0.0786 + j0.0538 Motors Assume that 1hp is equivalent to 1kVA Subtranscient reactance = 25% X Ratio = 6 R base kVA % X m1 Per unit reactance of motor 1 X m1 motor kVA 100 1000 25 0.625 pu 400 100 0.625 0.1042 pu 6 For motor 2 1000 25 0.416 X m2 0.416 pu Rm 2 0.069 pu 600 100 6 Z m 2 in pu = 0.069 + j0.416 Note that 1hp = 746w, if we assume a motor power factor of 0.746, then equivalent motor MVA because 1kVA. Hence, the equivalent circuit of the system is shown in Fig 13.2. The dotted lines indicate the ground potential. Fault at F1 : We now desire to compute Thevenin’s impedance at node A. For fault at F1 the network as shown in fig 13.2 can be reduced to network as shown in fig 13.3. Hence, total impedance, Z th is given by, 1 1 1 1 Z th Z s ZT Z c1 Z m1 Z c 2 Z m 2 1 1 1 0.01221 j 0.05785 0.233 j 0.703 0.1476 j 0.4698 1 1 1 0.059 78.1 0.74 71.6 0.49 72.6 Rm1 16.95 78.1 1.35 71.6 2.04 72.6 3.5 j16.6 0.426 j1.28 0.61 j1.9 4.536 j19.78 20.3 77.1 1 Z th 0.049 77.1 pu 20.3 77.1 Therefore, three phase fault current at fault F1 ba se current Z th 1202.8 0.049 24547A Fault at F2 For fault at F2, the network shown in fig 2. can be reduced as shown in fig 4. Calculation of Z Z Z c1 1 1 1 Z s ZT Z c 2 Z m 2 0.129 j 0.078 1 1 1 0.01221 j 0.05785 0.1476 j 0.4698 1 3.5 j16.6 0.61 j1.9 1 0.129 j 0.078 0.129 j 0.078 0.054 77.5 4.11 j18.5 0.129 j 0.078 0.012 j 0.053 0.141 j 0.131 pu 1 1 1 1 1 Z th Z Z m1 0.141 j 0.131 0.104 j 0.625 1 1 3.83 j 3.53 0.26 j1.56 0.192 42.7 0.633 80.5 0.129 j 0.078 4.09 j5.09 6.53 51.2 1 0.153 51.2 i.e., Z th 6.53 51.2 Therefore, the total three phase fault current at F2 ba se ampere per unit Z th 1202.8 7861.44 A 0.126 Fig 13.5 shows the single line diagram of a 3 bus system. The sequence data for transmission lines and generators are given in table 1. If a bolted single line to ground fault occurs at F1, calculate the fault current. If the fault impedance is j0.1pu; what will be the fault current? Let us take E as 1 pu. For a SLG fault, 3E Fault current where Z0 = Zero sequence impedance Z0 Z1 Z 2 3Z f Z1 = Positive sequence impedance Z2 = Negative sequence impedance We hav to find out the Thevenin’s equivalent zero, positive and negative sequence impedances with respect to fault F. Zero Sequence Impedance For calculating Z0, the circuit shown in fig 13.5 is reduced as shown in fig 13.6. i.e. j0.095 and j0.046 in parallel. i.e. Z0 j 0.021 j 0.031 j 0.052 pu Similarly, positive sequence impedance Z1 can be found out by reducing the circuit as shown in fig 13.7. i.e. Z1, positive sequence impedance = j0.01 + j0.124 = j0.134 pu Negative sequence impedance Z2 For negative sequence impedance the circuit can be as shown in fig 13.8. i.e. negative sequence impedance Z 2 j 0.01 j 0.08 = j0.09 pu 3E 3 1 0 pu Z1 Z 2 Z 0 j 0.134 j 0.09 j 0.052 3 1 0 3 1 0 10.869 90 j 0.276 j 0.276 90 If fault impedance Z f j 0.1 , then Now, fault current I f If 3E 3 1 0 pu 5.208 90 Z1 Z 2 Z0 3Z f j 0.276 j 0.1 3
© Copyright 2026 Paperzz