Introduction to Hypothesis Testing: The Binomial Test 9/29 ESP • Your friend claims he can predict the future • You flip a coin 5 times, and he’s right on 4 • Is your friend psychic? Two Hypotheses • Hypothesis – A theory about how the world works – Proposed as an explanation for data – Posed as statement about population parameters • Psychic – Some ability to predict future – Not perfect, but better than chance • Luck – Random chance – Right half the time, wrong half the time • Hypothesis testing – A method that uses inferential statistics to decide which of two hypotheses the data support Likelihood • Likelihood – Probability distribution of a statistic, according to each hypothesis – If result is likely according to a hypothesis, we say data “support” or “are consistent with” the hypothesis • Determining likelihood • Inference – Psychic: hard to say; how psychic? – Luck: can work out exactly; 50/50 chance each time Sample Strategy: Population – Work out probabilities according to luck hypothesis – Calculate how likely outcome would be Probability – Likely: luck can explain it – Unlikely: luck can't explain; must be ESP Support • “Innocent until proven guilty” – Assume luck unless compelling evidence to rule it out Hypotheses Statistics Likelihood Likelihood According to Luck 6/32 = 18.75% Flip Flip Flip Flip 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 Y Y Y Y Y Y N Y Y Y N Y Y Y Y N N Y Y Y Y Y Y Y N Y N Y Y N N Y Y Y N N N Y Y N Y Y Y N Y Y N Y N Y N Y Y N Y N N Y N Y Y Y Y N N Y N Y N N N Y Y N N N N Y N N Y Y N Y Y Y N N Y Y N Y N Y Y N N N Y Y Y Y N Y N Y N N Y N N Y N Y N N N N Y N Y Y N N Y Y N N N Y N Y N N Y N N N N Y Y Y N N N Y N N N N N Y N N N N N N N N Binomial Distribution • Binary data – A set of two-choice outcomes, e.g. yes/no, right/wrong • Binomial variable – A statistic for binary samples – Counts how many are “yes” / “right” / etc. • Binomial distribution – Probability distribution for a binomial variable – Gives probability for each possible value, from 0 to n • A family of distributions – Like Normal (need to specify mean and SD) – n: number of observations (sample size) – q: probability correct each time Binomial Distribution Formula (optional): p(count c) q c (1 q) nc 0.00 0.05 0.05 Probability 0.10 0.20 0.05 0.10 0.00 Probability 0.10 0.10 0.150.15 0.20 nn==20, 20,qq==.25 .5 0.150.30 nn==20, 5, qq == .5 .5 n! c!( n c )! 0 02 41 6 3 14 416 18 5 20 82 10 12 Count 0 2 4 6 8 10 12 14 16 18 20 Count Binomial Test • • Hypothesis testing for binomial statistics Null hypothesis – q = .5 – Nothing interesting going on; blind chance • Alternative hypothesis – q equals something else • Find likelihood according to null hypothesis • If p > .05 – p(count c) – Special number, called p-value or p – Tells how good an explanation for the data the null hypothesis is – Null hypothesis can explain data • If p < .05 – Null hypothesis cannot explain data – Rule out null and believe alternative hypothesis • .05 is arbitrary cut-off; more on this next time Applications • Any question of rate or proportion – Rates of outcomes: coins, other probabilities – Answers relative to chance: learning, memory, etc. – Composition of group: sex, politics, attitudes • Population – All people, events, etc. – Often infinite (probabilities) • Parameter – Proportion or probability in population • Sample – Set of binary outcomes – Answers for one student; category for each subject • Statistic – Proportion or count in sample Testing for ESP • Null hypothesis: Luck, q = .5 • Alternative hypothesis: q > .5 • Likelihood according to null: Binomial(5, .5) p(count 4) .15625 .03125 .1875 0.20 0.10 .15625 .03125 0.00 Probability Retain null hypothesis Luck can explain the data 0.30 • p > .05 0 1 2 3 Count 4 5 Testing for ESP – Stronger Evidence • • • • Nine correct out of ten Null hypothesis: Luck, q = .5 Alternative hypothesis: q > .5 Likelihood according to null: Binomial(10, .5) 0.15 .010 0.05 0.10 .001 0.00 Luck can’t explain the data Reject null hypothesis Probability • p < .05 0.20 p(count 9) .010 .001 .011 0 1 2 3 4 5 Count 6 7 8 9 10 Other values of q • Multiple-choice tests; guessing card suits – q = .25 • New null hypothesis, likelihood function 0.10 0.05 p = .014 0.00 Probability 0.15 0.20 n = 20, q = .25 0 2 4 6 8 10 12 14 16 18 20 Count Normal Approximation • For large n, Binomial is nearly Normal – Consequence of Central Limit Theorem: count = mean n – Mean = nq, Standard Deviation = nq(1 q) nq(1 q ) – Use Standard Normal to find p Probability Probability – .z (count 12 ) nq count n q Mean SD cutoff z 4 5 .5 2.5 1.1 3.5 .89 9 10 .5 5.0 1.6 8.5 2.21 0.00 0.05 0.10 0.10 0.15 0.15 0.20 0.20 0.25 0.25 0.00 0.05 • Convert cutoff to z-score Cutoff = 8.5 p Approx Exact .186 .188 .013 00 11 22 33 44 .011 55 Count Count 66 7 8 9 10
© Copyright 2026 Paperzz