Nuclear Effective Field Theory Paulo Bedaque Lawrence-Berkeley Laboratory Extracting low energy information from QCD in a model independent way: No nucleons a chiral perturbation theory One nucleon a heavy baryon chiral perturbation theory Two or more nucleons a Nuclear effective theory Hierarchy of scales: 8 MeV, 45 MeV NN scale (spin singlet), momentum in the deuteron (spin triplet) m , 270 MeV Fermi momentum in nuclei m QCD scale Two consequences: Bound states within the EFT range of validity Nuclear EFT is non-perturbative Two possible EFT’s “pionfull” Q mr ~ mp << “pionless” Q ~ 1/a << mp Pionless theory: two-nucleons 2 L (i 0 ) C0 () | |4 C2 () | |2 2 | |2 2M † C0 () 4π M C0 () 2 ( ik ) C0 ( )3 ( ik ) 2 1 4π +Λ+…-ik MC0 (Λ) (1/a 1S = 8 MeV 0 1 r k cotδ - + 0 k 2 +… a 2 4π 1 + Λ MC0 (Λ) a fine tuned cancellation 1/ a 3 S = 45 MeV) 1 That’s why nuclear physics exists ! another way of looking at the fine tuning: d c0 c0 (1 c0 ) d c0 () 4 M C0 () trivial fixed point non-trivial fixed point Assuming this is the only fine tuning: • Expansion in powers of Q/m, keep Qa to all orders T 1 1 r0 2 k a 2 r0 k 2 (1 1 ik 2 1 ik a a 1 ik ) C2 is NLO, not NNLO • Naïve dimensional analysis fails • C0 is the only non-perturbative operator A good example: neutrino-deuteron collisions (Butler, Chen) Haxton et al. : no exchange currents Kubodera et al. : a model of meson exchange currents 5% difference Both calculations are reproduced by EFT with two different values of L1A (Nσ 2σi τ 2 N)† Nτ 2 τ - σ 2 N, L1A 5 fm3 The same constant appears on pp fusion, m capture on deuterium, triton beta decay For the three-body (“pionless”) : † 3 How large is D 0 (ψ ψ) ? 1 MΛ 4 naïve dimensional analysis would appear only at NNNLO ultraviolet finite k p t(k,p) p 1/a, k For 1 ,k a p t(k, p) = 1 p2 D0 would not not run and would not needed at leading order : p 4 3 1 Λ2 dq p + pq+ q 0 q ln p2 - pq+ q2 2 2 q t(k,q) t(k, p) s) sin( 8 6 ps-1, 1 = 3 s cos( s ) 2 L=0, S=1/2: triton, helium 3, bosons Two kinds of channels: All others: Pauli principle, centrifugal barrier All others: 1) 1 2 =- , t(k, p) 1 p 3.17… ' 2) dq ( (q, p) - K(q, p) ) t 0 ~ 1/Q2 ' ' (q) = - dq ( ) ~ 1/L2 Three-body force no needed until very high orders, a lot of predictive power Neutron-deuteron elastic phase shifts L=0, S=3/2 L=2, S=1/2 + = AV18 + UX (Kievski et al.) = LO, m=Schmelzbach et al. = NLO, = NNLO L=0, S=3/2 scattering length: a(EFT)=5.09 + 0.89 + 0.35 + …=6.33m0.05 fm a(Exp)=6.35m0.02 fm 3H, 3He (and bosons): 1) 1: t(k, p) 1 is0 +1 p 2) , s0 ' dq ( (q, p) - K(q, p) ) t harder in the UV ' ' (q) = - dq ( 0 ~1/Q2 or ~1/QL (zero mode) change in on-shell amplitude 1.006… ~1/QL ) t ' (p) = t (p) + Csin(s0log(p)) Adjust H(L) so: ' 2 Q dq ( + H()) t (q) = 0 + O( 2 ) 2 2 three-body D () a H() a sin( s0 log( / ) arctg s0 ) 0 2 2 sin( s0 log( / ) arctg s0 ) force: limit cycle: L g e p/s0 L At higher orders: SUW(4) invariant three-body force terms are enhanced Neutron-deuteron elastic phase shifts: L=0, S=1/2 x = AV18 + UX (Kievski et al.) = LO, i= Schmelzbach et al. = NLO, = NNLO blue band describes the variation between =200 g 600 MeV Phillips line: one 3-body free parameter one line “Pionfull” EFT (expansion on Q/ and m/) 2 f2 i † L (i 0 g A i ) tr ( m † m ) Btr† C0 () | |4 C2 () | |2 2 | |2 2M 4 † e 2 i 2 f 0 2 , 0 2 Restrictions from c symmetry Potential: Amplitude: dependence ? Perturbatively this is inconsistent, but we now know better m ln 2 perturbative: destroys chiral expansion non-perturbative: still inconsistent lattice extrapolations, isospin breaking, cosmology k 2 ln destroys the momentum expansion momentum expansion is consistent Some NN phase shifts (Epelbaum et al.): 500<<600 3S =LO e1 1 =NLO =NNLO* N couplings fit =Nijmegen PWA Neutral pion photoproduction (Beane, Lee, van Kolck) 2 3k d |q 0 Ed e L Ld 8q d 2 10-3 E d (0) (1.79 0.2) m m 3 E EXP d 10-3 (0) (1.45 0.09) m
© Copyright 2026 Paperzz