Derivation of the principles of optimal expansion of bioenergy based on forest resources in combination with fossil fuels, CCS and combined heat and power production with consideration of economics and global warming Lecture by Professor Dr. Peter Lohmander, Swedish University of Agricultural Sciences, SLU, Sweden, http://www.Lohmander.com [email protected] Operations Research for the Future Forest Management, University of Guilan, Iran, March 8-12, 2014 Saturday March 8, 10.00-12.00 1 Derivation of the principles of optimal expansion of bioenergy based on forest resources in combination with fossil fuels, CCS and combined heat and power production with consideration of economics and global warming โข In the production of district heating, electricity and many other energy outputs, we may use fossil fuels and renewable inputs, in different combinations. The optimal input mix is a function of technological options, prices of different inputs and costs of alternative levels of environmental consequences. Even with presently existing technology in combined heat and power plants, it is usually possible to reduce the amount of fossil fuels such as coal and strongly increase the level of forest based energy inputs. In large parts of the world, such as Russian Federation, forest stocks are close to dynamic equilibria, in the sense that the net growth (and net carbon uptake) is close to zero. If these forests will be partly harvested, the net growth can increase and a larger part of the CO2 emitted from the CHP plants will be captured by the forests. Furthermore, with CCS, Carbon Capture and Storage, the rest of the emitted CO2 can be permanently stored. The lecture incudes the definition of a general optimization model that can handle these problems in a consistent way. The model is used to derive general principles of optimal decisions in this problem area via comparative statics analysis with general functions. โข The lecture also includes case studies from different parts of the world. In several countries, it is presently profitable to replace coal by forest inputs in CHP plants. In Norway and UK, CCS has been applied and a commercially attractive option during many years and the physical potential is large. Carbon taxes on fossil fuels explain this development. With increasing carbon taxes in all parts of the world, such developments could be expected everywhere. With increasing levels of forest inputs in combination with CCS, it is possible to reduce the CO2 in the atmosphere and the global warming problem can be managed. Furthermore, international trade in forest based energy can improve international relations, regional development and environmental conditions. โข Professor Dr. Peter Lohmander, Swedish University of Agricultural Sciences, SLU, Sweden, http://www.Lohmander.com [email protected] 2 The Lohmander Energy, Forest, Fossil Fuels, CCS and Climate System Optimization Model 3 4 5 6 The Lohmander Energy, Forest, Fossil Fuels, CCS and Climate System Optimization Model 7 8 9 10 Fuel mix 1991 - 2006 Oil (BLACK) Coal (DARK GREY) Ruber (LIGHT GREY) Forest chips (ORANGE) Waste wood (PINK) Waste (RED) 11 The Lohmander Energy, Forest, Fossil Fuels, CCS and Climate System Optimization Model 12 13 14 15 ๐ด๐๐ ๐ s.t. = โ๐๐ ๐ช๐ญ ๐ญ + ๐ช๐ ๐ + ๐ช๐บ ๐บ ๐ญ+๐ โฅ๐ด โ ๐๐ฎ ๐ + ๐ถ๐ญ ๐ญ + ๐ถ๐ ๐ โ ๐ถ๐บ ๐บ 16 The model does not include absolute constraints on the availability of fossil fuels. Motive: Such constraints are assumed not to be binding in the optimal total solution. Hydraulic fracturing also called fracturing and fracking has recently shown that there are very large quantitites of fossil fuels available in the world. 17 18 Analysis: ๐๐๐ฅ ๐ = โ๐๐ ๐ถ๐น ๐น + ๐ถโ โ + ๐ถ๐ ๐ โ ๐๐บ 1 + ๐ผ๐น ๐น + ๐ผโ โ โ ๐ผ๐ ๐ s.t. ๐น+โ โฅ๐ 19 Parameter assumptions: ๐๐ > 0 ๐๐บ > 0 ๐ผ๐น > 0 ๐ผโ > 0 0 < ๐ผ๐ < 1 ๐ผโ < 1 + ๐ผ๐น 20 This constraint is not binding: ๐ <๐น+โ 21 Cost function assumptions: ๐ถ๐นโฒ > 0 ๐ถ๐นโฒโฒ > 0 ๐ถโโฒ > 0 ๐ถโโฒโฒ > 0 ๐ถ๐โฒ > 0 ๐ถ๐โฒโฒ > 0 22 23 24 25 26 27 28 29 The classical dynamic natural resource model: ๐ ๐ ๐ = ๐๐ ๐ โ ๐ ๐ ๐ฒ ๐ฒ ๐(๐) = ๐ + ๐ช๐โ๐๐ ๐๐๐ ๐(๐) = ๐ฒ ๐โโ (๐>๐) 30 โ๐๐ ๐ฒ๐๐ช๐ ๐ ๐ = ๐ ๐ ๐ + ๐ช๐โ๐๐ ๐ ๐ ๐ ๐๐๐ =๐ ๐โโ ๐ ๐ (๐>๐) Such forests do not change the carbon levels of the atmosphere. 31 The Lagrange function, L, ๐ข๐ฌ: = โ๐๐ ๐ถ๐น ๐น + ๐ถโ โ + ๐ถ๐ ๐ โ ๐๐บ 1 + ๐ผ๐น ๐น + ๐ผโ โ โ ๐ผ๐ ๐ +๐ ๐น + โ โ ๐ 32 The Kuhn Tucker conditions are: ๐ญ โฅ ๐; ๐ โฅ ๐; ๐บ โฅ ๐ ๐ ๐ณ ๐ ๐ณ ๐ ๐ณ โค ๐; โค ๐; โค๐ ๐ ๐ญ ๐ ๐ ๐ ๐บ ๐ ๐ณ ๐ ๐ณ ๐ ๐ณ ๐ญ = ๐; ๐ = ๐; ๐บ =๐ ๐ ๐ญ ๐ ๐ ๐ ๐บ ๐โฅ๐ ๐ ๐ณ โฅ๐ ๐ ๐ ๐ ๐ณ ๐ =๐ ๐ ๐ 33 Here, we have four of the constraints: ๐ ๐ณ =๐ญ+๐โ๐ด ๐ ๐ ๐ ๐ณ = โ๐๐ ๐ชโฒ๐ญ ๐ญ โ ๐๐ฎ ๐ + ๐ถ๐ญ + ๐ ๐ ๐ญ ๐ ๐ณ โฒ = โ๐๐ ๐ช๐ ๐ โ ๐๐ฎ ๐ถ๐ + ๐ ๐ ๐ ๐ ๐ณ โฒ = โ๐๐ ๐ช๐บ ๐บ + ๐๐ฎ ๐ถ๐บ ๐ ๐บ โฅ๐ โค๐ โค๐ โค๐ 34 Assumption: The optimal solution is an interior solution. ๐น > 0; โ > 0; ๐ > 0; ๐ > 0 As a consequence, we know that: ๐๐ฟ ๐๐ฟ ๐๐ฟ ๐๐ฟ = 0; = 0; = 0; =0 ๐๐ ๐๐น ๐โ ๐๐ 35 This means that the following equation system should be solved: ๐๐ฟ =๐น+โโ๐ ๐๐ ๐๐ฟ โฒ = โ๐๐ ๐ถ๐น ๐น โ ๐๐บ 1 + ๐ผ๐น + ๐ ๐๐น ๐๐ฟ โฒ = โ๐๐ ๐ถโ โ โ ๐๐บ ๐ผโ + ๐ ๐โ ๐๐ฟ = โ๐๐ ๐ถ๐โฒ ๐ + ๐๐บ ๐ผ๐ ๐๐ =0 =0 =0 =0 36 The system with four equations and four endogenous variables is partly separable. It may be split into one system with tree equations and three endogenous variables (๐ญ, ๐ ๐๐๐ ๐) and a separate equation with only one endogenous variable, ๐บ . Stars denote optimal values. 37 First, we investigate ๐บโ . ๐ ๐ณ = โ๐๐ ๐ชโฒ๐บ ๐บ + ๐๐ฎ ๐ถ๐บ ๐ ๐บ ๐ ๐ณ =๐ ๐ ๐บ โค๐ ๐ ๐ถ ๐ฎ ๐บ โฒ โ ๐ช๐บ ๐บ = ๐๐ 38 We differentiate the first order optimum condition: โฒ โ โ๐๐ ๐ชโฒโฒ ๐บ ๐ ๐บ โ ๐ช ๐บ ๐บ ๐บ ๐ ๐๐ + ๐ถ๐บ ๐ ๐๐ฎ + ๐๐ฎ ๐ ๐ถ๐บ = ๐ ๐ โฒ ๐ ๐บ = โ๐ช ๐บ ๐บ ๐ ๐๐ + ๐ถ๐บ ๐ ๐๐ฎ + ๐๐ฎ ๐ ๐ถ๐บ โฒโฒ ๐๐ ๐ช๐บ ๐บ โ 39 โ The derivatives of ๐บ with respect to the parameters are the following: โ ๐ ๐บ = ๐ ๐๐ โฒ โ๐ช๐บ ๐บ ๐๐ ๐ชโฒโฒ ๐บ ๐บ <๐ ๐ ๐บโ ๐ถ๐บ = >๐ โฒโฒ ๐ ๐๐ฎ ๐๐ ๐ช๐บ ๐บ ๐ ๐บโ ๐๐ฎ = >๐ โฒโฒ ๐ ๐ถ๐บ ๐๐ ๐ช๐บ ๐บ 40 โ ๐ ๐บ = ๐ ๐๐ โฒ โ๐ช๐บ ๐บ ๐๐ ๐ชโฒโฒ ๐บ ๐บ <๐ ๐ ๐บโ ๐ถ๐บ = >๐ โฒโฒ ๐ ๐๐ฎ ๐๐ ๐ช๐บ ๐บ ๐ ๐บโ ๐๐ฎ = >๐ โฒโฒ ๐ ๐ถ๐บ ๐๐ ๐ช๐บ ๐บ ๐ด๐๐ ๐ s.t. = โ๐๐ ๐ช๐ญ ๐ญ + ๐ช๐ ๐ + ๐ช๐บ ๐บ ๐ญ+๐ โฅ๐ด โ ๐๐ฎ ๐ + ๐ถ๐ญ ๐ญ + ๐ถ๐ ๐ โ ๐ถ๐บ ๐บ 41 Next, we investigate ๐ญโ , ๐โ ๐๐๐ ๐โ . The first order optimum conditions are found from this three dimensional equation system: ๐ ๐ณ = ๐ญ+๐โ๐ด =๐ ๐ ๐ ๐ ๐ณ = โ๐๐ ๐ชโฒ๐ญ ๐ญ โ ๐๐ฎ ๐ + ๐ถ๐ญ + ๐ = ๐ ๐ ๐ญ ๐ ๐ณ โฒ = โ๐๐ ๐ช๐ ๐ โ ๐๐ฎ ๐ถ๐ + ๐ =๐ ๐ ๐ 42 We differentiate the equations: ๐ โ๐๐ ๐ชโฒโฒ ๐ญ ๐ ๐ ๐ โ๐๐ ๐ชโฒโฒ ๐ ๐ ๐ด ๐ ๐ ๐ญโ โฒ โ ๐ช ๐ ๐ ๐ = ๐ญ ๐ ๐๐ + ๐ + ๐ถ๐ญ ๐ ๐๐ฎ + ๐๐ฎ ๐ ๐ถ๐ญ โฒ โ ๐ช ๐ ๐ ๐ ๐ ๐ ๐๐ + ๐ถ๐ ๐ ๐๐ฎ + ๐๐ฎ ๐ ๐ถ๐ 43 When we apply Cramerโs rule, we need to know ๐ซ . ๐ซ = ๐ โ๐๐ ๐ชโฒโฒ ๐ญ ๐ ๐ ๐ โฒโฒ โ๐๐ ๐ช๐ โฒโฒ ๐๐ ๐ช๐ + ๐ชโฒโฒ ๐ญ >๐ ๐ซ = ๐ ๐ ๐ 44 The derivatives of ๐ญโ , ๐โ ๐๐๐ ๐โ with respect to M are determined via Cramerโs rule: ๐ ๐ ๐ โ ๐ ๐ญ = ๐ ๐ด โ ๐ ๐ โฒโฒ โ๐๐ ๐ช๐ ๐ซ ๐ ๐ ๐ โฒโฒ ๐ช๐ ๐ ๐ญ = โฒโฒ โฒโฒ > ๐ ๐ ๐ด ๐ช๐ + ๐ช๐ญ 45 ๐ โฒโฒ โ๐๐ ๐ช๐ญ ๐ ๐โ ๐ = ๐ ๐ด ๐ซ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐โ ๐ชโฒโฒ ๐ญ = โฒโฒ โฒโฒ > ๐ ๐ ๐ด ๐ช๐ + ๐ช๐ญ 46 โ ๐ ๐ = ๐ ๐ด ๐ โ๐๐ ๐ชโฒโฒ ๐ญ ๐ ๐ ๐ โ๐๐ ๐ชโฒโฒ ๐ ๐ ๐ ๐ ๐ซ โฒโฒ ๐ ๐โ ๐๐ ๐ชโฒโฒ ๐ช ๐ญ ๐ = โฒโฒ โฒโฒ > ๐ ๐ ๐ด ๐ช๐ + ๐ช๐ญ 47 ๐ ๐ญโ ๐ชโฒโฒ ๐ = โฒโฒ โฒโฒ > ๐ ๐ ๐ด ๐ช๐ + ๐ช๐ญ ๐ ๐โ ๐ชโฒโฒ ๐ญ = โฒโฒ โฒโฒ > ๐ ๐ ๐ด ๐ช๐ + ๐ช๐ญ โ ๐ ๐ = ๐ ๐ด ๐ด๐๐ ๐ s.t. = โ๐๐ ๐ช๐ญ ๐ญ + ๐ช๐ ๐ + ๐ช๐บ ๐บ ๐ญ+๐ โฅ๐ด โฒโฒ โฒโฒ ๐๐ ๐ช๐ญ ๐ช๐ โฒโฒ ๐ชโฒโฒ + ๐ช ๐ญ ๐ >๐ โ ๐๐ฎ ๐ + ๐ถ๐ญ ๐ญ + ๐ถ๐ ๐ โ ๐ถ๐บ ๐บ 48 The derivatives of ๐ญโ , ๐โ ๐๐๐ ๐โ with respect to ๐๐ฎ are: โ ๐ ๐ญ = ๐ ๐๐ฎ ๐ ๐ (๐ + ๐ถ๐ญ ) ๐ โฒโฒ ๐ถ๐ โ๐๐ ๐ช๐ ๐ ๐ ๐ ๐ซ โ ๐ ๐ญ ๐ถ๐ โ (๐ + ๐ถ๐ญ ) = โฒโฒ โฒโฒ < ๐ ๐ ๐๐ฎ ๐๐ (๐ช๐ + ๐ช๐ญ ) 49 ๐ ๐โ = ๐ ๐๐ฎ ๐ โ๐๐ ๐ชโฒโฒ ๐ญ ๐ ๐ (๐ + ๐ถ๐ญ ) ๐ถ๐ ๐ ๐ ๐ ๐ซ ๐ ๐โ ๐ + ๐ถ๐ญ โ ๐ถ๐ = >๐ โฒโฒ โฒโฒ ๐ ๐๐ฎ ๐๐ (๐ช๐ + ๐ช๐ญ ) 50 ๐ โฒโฒ โ๐๐ ๐ช๐ญ ๐ ๐ ๐โ = ๐ ๐๐ฎ ๐ ๐ โฒโฒ โ๐๐ ๐ช๐ ๐ ๐ + ๐ถ๐ญ ๐ถ๐ ๐ซ โ ๐ ๐ = ๐ ๐๐ฎ โฒโฒ ๐ช๐ ๐ + ๐ถ๐ญ + โฒโฒ โฒโฒ ๐ช๐ + ๐ช๐ญ โฒโฒ ๐ถ ๐ช๐ญ ๐ >๐ 51 ๐ ๐ญโ ๐ถ๐ โ (๐ + ๐ถ๐ญ ) = โฒโฒ โฒโฒ < ๐ ๐ ๐๐ฎ ๐๐ (๐ช๐ + ๐ช๐ญ ) ๐ ๐โ ๐ + ๐ถ๐ญ โ ๐ถ๐ = >๐ โฒโฒ โฒโฒ ๐ ๐๐ฎ ๐๐ (๐ช๐ + ๐ช๐ญ ) โฒโฒ ๐ถ ๐ ๐โ ๐ชโฒโฒ ๐ + ๐ถ + ๐ช ๐ญ ๐ญ ๐ ๐ = >๐ โฒโฒ โฒโฒ ๐ ๐๐ฎ ๐ช๐ + ๐ช๐ญ ๐ด๐๐ ๐ s.t. = โ๐๐ ๐ช๐ญ ๐ญ + ๐ช๐ ๐ + ๐ช๐บ ๐บ ๐ญ+๐ โฅ๐ด โ ๐๐ฎ ๐ + ๐ถ๐ญ ๐ญ + ๐ถ๐ ๐ โ ๐ถ๐บ ๐บ 52 The derivatives of ๐ญโ , ๐โ ๐๐๐ ๐โ with respect to ๐๐ : ๐ ๐ญโ = ๐ ๐๐ ๐ ๐ชโฒ๐ญ ๐ชโฒ๐ ๐ ๐ โ๐๐ ๐ชโฒโฒ ๐ ๐ ๐ ๐ ๐ซ > ๐ ๐ญ โ = โฒโฒ โฒโฒ = ๐ ๐ ๐๐ ๐๐ (๐ช๐ + ๐ช๐ญ ) < โ โฒ ๐ช๐ ๐ชโฒ๐ญ 53 Observation: The sign of ๐ ๐ญโ ๐ ๐๐ is expected to change over time, since fossil fuels in the long run become more scarce and more costly to extract. In most cases, it is assumed that ๐ ๐ญโ ๐ ๐๐ 2014. At some future point in time, points in time ๐ ๐ญโ ๐ ๐๐ > ๐ in the year ๐ ๐ญโ ๐ ๐๐ = ๐ and at later <๐. 54 ๐ ๐โ = ๐ ๐๐ ๐ โฒโฒ โ๐๐ ๐ช๐ญ ๐ ๐ โฒ ๐ช๐ญ โฒ ๐ช๐ ๐ ๐ ๐ ๐ซ > ๐ ๐โ ๐ชโฒ๐ญ โ ๐ชโฒ๐ = โฒโฒ โฒโฒ = ๐ ๐ ๐๐ ๐๐ (๐ช๐ + ๐ช๐ญ ) < 55 Observation: The sign of ๐ ๐โ ๐ ๐๐ is expected to change over time, since fossil fuels in the long run become more scarce and more costly to extract. In most cases, it is assumed that ๐ ๐โ ๐ ๐๐ 2014. At some future point in time, later points in time ๐ ๐โ ๐ ๐๐ < ๐ in the year ๐ ๐โ ๐ ๐๐ = ๐ and at >๐. 56 ๐ โ๐๐ ๐ชโฒโฒ ๐ญ ๐ โ ๐ ๐ = ๐ ๐๐ ๐ ๐ โ๐๐ ๐ชโฒโฒ ๐ ๐ ๐ชโฒ๐ญ ๐ชโฒ๐ ๐ซ โ ๐ ๐ = ๐ ๐๐ โฒโฒ โฒ ๐ช๐ ๐ช๐ญ โฒโฒ ๐ช๐ + + โฒโฒ โฒ ๐ช๐ญ ๐ช๐ โฒโฒ ๐ช๐ญ >๐ 57 > ๐ ๐ญโ ๐ชโฒ๐ โ ๐ชโฒ๐ญ = โฒโฒ โฒโฒ = ๐ ๐ ๐๐ ๐๐ (๐ช๐ + ๐ช๐ญ ) < โ โฒ โฒ ๐ช๐ญ โ ๐ช๐ โฒโฒ ๐๐ (๐ชโฒโฒ + ๐ช ๐ญ) ๐ โ โฒโฒ โฒ ๐ช๐ ๐ช๐ญ ๐ชโฒโฒ ๐ ๐ ๐ = ๐ ๐๐ ๐ ๐ = ๐ ๐๐ ๐ด๐๐ ๐ s.t. = โ๐๐ ๐ช๐ญ ๐ญ + ๐ช๐ ๐ + ๐ช๐บ ๐บ ๐ญ+๐ โฅ๐ด + + โฒโฒ โฒ ๐ช๐ญ ๐ช๐ ๐ชโฒโฒ ๐ญ > = ๐ < >๐ โ ๐๐ฎ ๐ + ๐ถ๐ญ ๐ญ + ๐ถ๐ ๐ โ ๐ถ๐บ ๐บ 58 The derivatives of ๐ญโ , ๐โ ๐๐๐ ๐โ with respect to ๐ถ๐ญ are: ๐ ๐ญโ = ๐ ๐ถ๐ญ ๐ ๐๐ฎ ๐ ๐ ๐ โฒโฒ โ๐๐ ๐ช๐ ๐ ๐ ๐ ๐ซ ๐ ๐ญโ โ๐๐ฎ = โฒโฒ โฒโฒ < ๐ ๐ ๐ถ๐ญ ๐๐ (๐ช๐ + ๐ช๐ญ ) 59 ๐ โฒโฒ โ๐๐ ๐ช๐ญ ๐ ๐โ ๐ = ๐ ๐ถ๐ญ ๐ซ ๐ ๐๐ฎ ๐ ๐ ๐ ๐ ๐ ๐โ ๐๐ฎ = โฒโฒ โฒโฒ > ๐ ๐ ๐ถ๐ญ ๐๐ (๐ช๐ + ๐ช๐ญ ) 60 โ ๐ ๐ = ๐ ๐ถ๐ญ ๐ โ๐๐ ๐ชโฒโฒ ๐ญ ๐ ๐ ๐ โ๐๐ ๐ชโฒโฒ ๐ ๐ ๐๐ฎ ๐ ๐ซ ๐ ๐โ ๐ชโฒโฒ ๐ ๐๐ฎ = โฒโฒ โฒโฒ > ๐ ๐ ๐ถ๐ญ ๐ช๐ + ๐ช๐ญ 61 ๐ ๐ญโ โ๐๐ฎ = โฒโฒ โฒโฒ < ๐ ๐ ๐ถ๐ญ ๐๐ (๐ช๐ + ๐ช๐ญ ) ๐ ๐โ ๐๐ฎ = โฒโฒ โฒโฒ > ๐ ๐ ๐ถ๐ญ ๐๐ (๐ช๐ + ๐ช๐ญ ) ๐ ๐โ ๐ชโฒโฒ ๐ ๐๐ฎ = โฒโฒ โฒโฒ > ๐ ๐ ๐ถ๐ญ ๐ช๐ + ๐ช๐ญ ๐ด๐๐ ๐ s.t. = โ๐๐ ๐ช๐ญ ๐ญ + ๐ช๐ ๐ + ๐ช๐บ ๐บ ๐ญ+๐ โฅ๐ด โ ๐๐ฎ ๐ + ๐ถ๐ญ ๐ญ + ๐ถ๐ ๐ โ ๐ถ๐บ ๐บ 62 The derivatives of ๐ญโ , ๐โ ๐๐๐ ๐โ with respect to ๐ถ๐ are: โ ๐ ๐ญ = ๐ ๐ถ๐ ๐ ๐ ๐๐ฎ ๐ ๐ โฒโฒ โ๐๐ ๐ช๐ ๐ซ ๐ ๐ ๐ โ ๐ ๐ญ ๐๐ฎ = โฒโฒ โฒโฒ > ๐ ๐ ๐ถ๐ ๐๐ (๐ช๐ + ๐ช๐ญ ) 63 โ ๐ ๐ = ๐ ๐ถ๐ ๐ โฒโฒ โ๐๐ ๐ช๐ญ ๐ ๐ ๐ ๐๐ฎ ๐ ๐ ๐ ๐ซ โ ๐ ๐ โ๐๐ฎ = โฒโฒ โฒโฒ < ๐ ๐ ๐ถ๐ ๐๐ (๐ช๐ + ๐ช๐ญ ) 64 ๐ ๐โ = ๐ ๐ถ๐ ๐ โฒโฒ โ๐๐ ๐ช๐ญ ๐ ๐ ๐ โฒโฒ โ๐๐ ๐ช๐ ๐ ๐ ๐๐ฎ ๐ซ โ ๐ ๐ = ๐ ๐ถ๐ โฒโฒ ๐ช๐ญ ๐๐ฎ โฒโฒ โฒโฒ ๐ช๐ + ๐ช๐ญ >๐ 65 ๐ ๐ญโ ๐๐ฎ = โฒโฒ โฒโฒ > ๐ ๐ ๐ถ๐ ๐๐ (๐ช๐ + ๐ช๐ญ ) ๐ ๐โ โ๐๐ฎ = โฒโฒ โฒโฒ < ๐ ๐ ๐ถ๐ ๐๐ (๐ช๐ + ๐ช๐ญ ) โ ๐ ๐ = ๐ ๐ถ๐ ๐ด๐๐ ๐ s.t. = โ๐๐ ๐ช๐ญ ๐ญ + ๐ช๐ ๐ + ๐ช๐บ ๐บ ๐ญ+๐ โฅ๐ด โฒโฒ ๐ช๐ญ ๐๐ฎ โฒโฒ โฒโฒ ๐ช๐ + ๐ช๐ญ >๐ โ ๐๐ฎ ๐ + ๐ถ๐ญ ๐ญ + ๐ถ๐ ๐ โ ๐ถ๐บ ๐บ 66 67 68 69 70 71 References http://www.lohmander.com/Information/Ref.htm Lohmander, P. (Chair) TRACK 1: Global Bioenergy, Economy and Policy, BITโs 2nd World Congress on Bioenergy, Xi'an, China, April 25-28, 2012 http://www.Lohmander.com/Schedule_China_2012.pdf http://www.Lohmander.com/PLWCBE12intro.ppt Lohmander, P., Economic optimization of sustainable energy systems based on forest resources with consideration of the global warming problem: International perspectives, BITโs 2nd World Congress on Bioenergy, Xi'an, China, April 25-28, 2012 http://www.Lohmander.com/WorldCongress12_PL.pdf http://www.Lohmander.com/WorldCongress12_PL.doc http://www.Lohmander.com/PLWCBE12.ppt 72 Lohmander, P., Lectures at Shandong Agricultural University, April 29 - May 1, 2012, Jinan, China, http://www.Lohmander.com/PLJinan12.ppt Lohmander, P. (Chair) TRACK: Finance, Strategic Planning, Industrialization and Commercialization, BITโs 1st World Congress on Bioenergy, Dalian World Expo Center, Dalian, China, April 25-30, 2011 http://www.bitlifesciences.com/wcbe2011/fullprogram_track5.asp http://www.lohmander.com/PRChina11/Track_WorldCongress11_PL.pdf http://www.lohmander.com/ChinaPic11/Track5.ppt Lohmander, P., Economic forest management with consideration of the forest and energy industries, BITโs 1st World Congress on Bioenergy, Dalian World Expo Center, Dalian, China, April 25-30, 2011 http://www.lohmander.com/PRChina11/WorldCongress11_PL.pdf http://www.lohmander.com/ChinaPic11/LohmanderTalk.ppt 73 CONCLUSIONS: With increasing levels of forest inputs in combination with CCS, it is possible to reduce the CO2 in the atmosphere and the global warming problem can be managed. Furthermore, international trade in forest based energy can improve international relations, regional development and environmental conditions. All suggestions concerning future cooperation projects are welcome! Thank you! Peter Lohmander 74 APPENDIX Observation: The classical dynamic natural resource model: ๐ + ๐๐พ + ๐ ๐ฅ = 1โ๐ฅ ๐๐ฅ ๐ฅ = ๐ ๐ฅ 1 โ ๐๐ก ๐พ ๐=1 ๐๐พ + ๐ = 0 ๐๐ฅ ๐ = ๐ ๐ฅ โ ๐ฅ 2 ๐๐ก ๐พ ๐๐ฅ = ๐ ๐ฅ 1 + ๐พ๐ฅ , ๐๐ก 1 ๐๐ฅ = ๐ ๐๐ก ๐ฅ 1 + ๐พ๐ฅ 1 ๐ ๐ = + ๐ฅ 1 + ๐พ๐ฅ ๐ฅ 1 + ๐พ๐ฅ ๐ ๐ 1 + ๐พ๐ฅ ๐ + ๐๐ฅ + = ๐ฅ 1 + ๐พ๐ฅ ๐ฅ 1 + ๐พ๐ฅ 1 + ๐พ๐ฅ ๐ + ๐๐ฅ 1 = ๐ฅ 1 + ๐พ๐ฅ ๐ฅ 1 + ๐พ๐ฅ Solution: ๐พ = โ๐พ โ1 ๐, ๐ = (1, โ๐พ) 1 ๐๐ฅ = ๐ ๐๐ก ๐ฅ 1 + ๐พ๐ฅ ๐ ๐ + ๐๐ฅ = ๐ ๐๐ก ๐ฅ 1 + ๐พ๐ฅ 1 ๐พ โ ๐๐ฅ = ๐ ๐๐ก ๐ฅ 1 + ๐พ๐ฅ ๐๐ฟ๐(1 + ๐พ๐ฅ) ๐พ = ๐๐ฅ 1 + ๐พ๐ฅ 1 + ๐พ๐ฅ ๐ + ๐๐ฅ = 1 ๐ + ๐๐พ๐ฅ + ๐๐ฅ = 1 ๐ + ๐๐พ + ๐ ๐ฅ = 1 75 1 ๐พ ๐๐ฅ โ ๐๐ฅ = ๐ ๐๐ก ๐ฅ 1 + ๐พ๐ฅ 1 ๐๐ฅ โ ๐ฅ ๐พ ๐๐ฅ = 1 + ๐พ๐ฅ ๐ ๐๐ก ๐ฟ๐ ๐ฅ โ ๐ฟ๐ 1 + ๐พ๐ฅ = ๐ ๐ก + ๐ถ1 ๐ฅ ๐ฟ๐ = ๐ ๐ก + ๐ถ1 1 + ๐พ๐ฅ ๐ฅ ๐ฟ๐ ๐ 1+๐พ๐ฅ ๐ฅ(๐ก) = lim ๐ฅ(๐ก) = ๐พ ๐กโโ (๐ >0) ๐๐ฅ ๐พ๐ ๐ถ๐ โ๐ ๐ก = ๐๐ก 1 + ๐ถ๐ โ๐ ๐ก lim = ๐ ๐ ๐ก+๐ถ1 ๐พ 1 + ๐ถ๐ โ๐ ๐ก ๐กโโ (๐ >0) 2 ๐๐ฅ =0 ๐๐ก ๐ฅ = ๐ถ2 ๐ ๐ ๐ก 1 + ๐พ๐ฅ ๐ฅ = 1 + ๐พ๐ฅ ๐ถ2 ๐ ๐ ๐ก ๐ฅ 1 โ ๐ถ2 ๐พ๐ ๐ ๐ก = ๐ถ2 ๐ ๐ ๐ก ๐ถ2 ๐ ๐ ๐ก ๐ฅ= 1 โ ๐ถ2 ๐พ๐ ๐ ๐ก ๐ฅ= 1 1 โ๐ ๐ก ๐ โ๐พ ๐ถ2 ๐พ = โ๐พ โ1 ๐ฅ= 1 1 โ๐ ๐ก 1 +๐พ ๐ถ2 ๐ 76
© Copyright 2026 Paperzz