The Cross-Section of Expected Corporate Bond Returns: Betas or Characteristics? William R. Gebhardt Søren Hvidkjær Bhaskaran Swaminathan Journal of Financial Economics, 2005 Introduction This paper investigates the ability of betas and characteristics in explaining the cross-section of corporate bond returns. In equities: Fama-French (1992) vs. Fama-French (1993) vs. Daniel-Titman (1997) vs. Davis-FamaFrench (2000) Two identifiable sources of risk: Default risk and term risk. Betas are then loadings on these factors, while characteristics are bond ratings and duration. Focus on systematic vs. idiosyncratic risk, rather than risk vs. mispricing. 2 Key Findings Betas, rather than characteristics, appear to be priced in the corporate bond market Default betas vs. ratings: Default betas matter, weaker evidence of ratings being priced Term betas vs. duration: Term betas matter, but evidence is weaker Strong (but less surprising) evidence that YTM predicts the cross-section of returns 3 Outline Data: LBFI Database and our sample The explanatory variables Bond market factors: term and default betas Bond characteristics: ratings and duration The two test methods: Portfolio tests • Univariate sorts on betas and characteristics • Conditional sorts on betas and characteristics – And on Yield-to-maturity Fama-MacBeth regressions Conclusion and practical implications 4 Data Lehman Bros. Fixed Income Database. Month-end bid prices, ratings, yields, etc. in the period 1973-1997 for a large cross-section of U.S. corporate bonds. Trader quotes and matrix prices. No transactions prices, but input to traded indices Some missing values. 5 Our Sample To be included in our sample, each bond must have no more than 4 missing values be non-convertible be coupon-bearing have at least 3 years to maturity be investment grade This leaves around 3000 bonds per year. 6 Bond Market Factors Following Fama-French (1993), we define: TERM: The difference between the monthly returns on a portfolio of long-term U.S. government bonds, and one month T-bills. DEF: The difference between the monthly returns on a value-weighted portfolio of all investmentgrade corporate bonds with at least 10 years to maturity, and a portfolio of long-term government bonds. • Results qualitatively identical with alternative DEF factor based on BBB bonds only (not presented) 7 Factors: Summary Statistics Mean Std Min Max DEF 0,04% 1,20% -5,37% 5,48% TERM 0,20% 3,18% -9,37% 13,95% Percentage monthly returns. Table 1a 8 The Factor Model: Portfolio-level regressions rp rf d DEF t TERM u AAA AA A BBB -0,01 d 0,82 t 0,92 (-0,60) (28,67) (72,45) -0,02 0,87 0,90 (-1,46) (44,50) (109,17) 0,00 0,96 0,88 (-0,26) (38,69) (109,51) 0,04 1,08 0,88 (0,97) (15,69) (46,56) R2 0,98 0,99 0,99 0,93 Gibbons, Ross, Shanken Ftest: F-statistic 0,781 P-value 0,538 Table 1b 9 The Factor Model: ex ante betas as measures of systematic risk ri rf d DEF t TERM u Regression is estimated for each bond each month, using prior 60 months return. Beta estimates are then used to form portfolios, and in Fama-MacBeth regressions. 10 Bond characteristics as measures of total risk Default risk measure: Corporate bond ratings from Moody’s/Standard & Poor: AAA, AA, A, BBB S&P rating used if available. Otherwise, Moody’s Term risk measure: Modified duration: price sensitivity of the bond to a parallel shift in the yield curve 11 Univariate Sorts: Ratings Table 2a AAA AA A BBB Diff t(diff) N 210 787 1226 674 d 0,72 0,81 0,98 1,26 t 0,96 0,95 0,94 0,95 Maturity Duration Rating 18,79 7,29 2 16,42 15,23 14,6 6,79 6,43 6,15 4,2 6,93 9,89 Return 0,26 0,27 Duration adjusted return -0,02 -0,01 0,27 0 Yield 10,16 10,8 9,75 9,92 0,33 0,07 (1,31) 0,04 0,06 (1,51) 12 Univariate Sorts: Duration N d Low 579 0,73 t Maturity 0,70 5,23 Duration Rating 3,50 6,46 5,33 7,01 6,43 6,73 7,54 6,41 8,73 5,07 Return 0,24 0,29 0,30 0,31 0,28 Dur/Rating Adj. Ret. 0,00 0,01 0,00 0,01 -0,01 -0,01 (-0,67) Yield 9,97 Table 2b 580 1,00 580 1,05 580 1,07 High 579 0,93 diff t(diff) 0,87 0,97 1,03 1,08 10,39 14,60 18,53 24,83 0,04 (0,37) 10,18 10,21 10,30 10,13 13 Univariate Sorts: Default beta N d Low 579 0,40 t Maturity 0,77 14,04 Duration Rating 6,00 5,39 6,65 5,41 6,83 5,87 6,85 6,59 6,77 7,95 Return 0,21 0,25 0,28 0,31 0,35 0,13 (2,54) Dur/Rating Adj. Ret. -0,02 -0,02 0,00 0,01 0,05 0,07 (3,37) Yield 10,05 10,00 10,10 10,21 10,48 Table 2c 580 0,76 580 0,95 580 1,15 High 579 1,65 diff t(diff) 0,93 0,97 1,00 1,09 16,69 16,81 16,50 16,53 14 Univariate Sorts: Term beta N d Low 579 0,60 t Maturity 0,60 9,46 Duration Rating 4,65 6,43 5,76 6,30 6,67 6,12 7,45 5,92 7,94 6,16 Return 0,22 0,24 0,28 0,30 0,33 0,11 (1.00) Dur/Rating Adj. Ret. -0,03 -0,02 0,00 0,01 0,04 0,07 (1.66) Yield 10,26 10,04 10,09 10,13 10,20 Table 2d 580 0,85 580 0,99 580 1,03 High 579 1,24 diff t(diff) 0,85 0,97 1,06 1,21 13,09 16,46 19,09 20,26 15 Returns to default beta portfolios within rating/duration portfolios Panel A: Pre-ranking Default Beta Char. portfolio bd Rating Duration 1 2 3 Diff high short 0,219 0,199 0,220 0,002 high med. 0,266 0,272 0,303 0,038 high long 0,242 0,280 0,315 0,073 t(diff) (0,05) (1,18) (2,05) med. short 0,213 0,214 0,256 0,043 (1,19) med. med. 0,263 0,297 0,350 0,087 (2,18) med. long 0,236 0,289 0,316 0,080 (2,37) low low low short med. long 0,280 0,284 0,201 0,314 0,308 0,242 0,378 0,371 0,305 0,098 0,088 0,104 (1,97) (1,81) (1,56) 245 0,268 0,313 0,068 (2,73) Average High default beta portfolios exhibit high returns. Effect (diff) monotonically increasing in rating, duration. Table 3a 16 Ex ante default betas predict ex post betas Rating Duration 1 2 3 bd high high short med. 0,565 0,883 0,648 0,973 0,776 1,026 high long 0,886 0,953 0,974 med. short 0,662 0,796 0,860 med. med. 1,003 0,999 1,089 med. low low long short med. 0,961 0,787 1,187 1,027 1,016 1,218 1,066 1,112 1,204 low long 1,116 1,160 1,233 0,894 0,977 1,038 Average High pre-ranking default beta portfolios have high post-ranking default betas Table 4b 17 Long-short default portfolio regressions: the Daniel-Titman test Panel B: Regression results for high default beta minus low default beta portfolio Rating Duration high short high med. high long med. short med. med. med. long -0,049 0,007 0,067 -0,004 0,068 0,068 d 0,211 0,143 0,088 0,198 0,086 0,105 t 0,162 0,094 0,012 0,150 0,061 0,033 t(t) 14,80 6,64 0,77 14,83 3,90 2,19 Adj. R2 -2,15 0,28 1,84 -0,19 2,26 1,99 t(d ) 8,99 3,97 1,47 6,95 1,96 1,88 t() 0,65 0,30 0,01 0,62 0,13 0,04 low low short med. 0,054 0,076 0,326 0,017 0,121 0,042 1,23 1,64 4,60 0,27 4,05 1,81 0,23 0,03 low long 0,067 0,116 0,125 1,15 1,48 2,45 0,13 0,039 0,143 0,089 2,06 5,86 10,00 0,44 Average Table 4d 18 Summary: default betas predict returns So far: Strong relationship between default betas and the cross-section of future stock returns in univariate portfolio setting Same results within portfolios sorted on ratings and duration. Default betas survive the Daniel-Titman test How about term betas? 19 Returns to term beta portfolios within rating/duration portfolios Char. portfolio Rating Duration high short 1 0,197 bd 2 0,207 3 0,235 Diff 0,038 t(diff) (0,62) high high med. med. med. long short med. 0,252 0,236 0,215 0,270 0,275 0,275 0,217 0,291 0,307 0,307 0,259 0,352 0,055 0,071 0,045 0,082 (1,06) (1,21) (0,70) (1,59) med. low low low long short med. long 0,230 0,282 0,271 0,176 0,296 0,322 0,336 0,268 0,315 0,387 0,355 0,316 0,085 0,105 0,085 0,140 (1,42) (1,23) (1,25) (1,62) 0,237 0,276 0,315 0,078 (1,51) Average Relationship between term betas and returns is weaker, but monotonic. Table 3b 20 Ex ante term betas predict ex post betas Charac. Portfolio Rating Duration Preranking Term Beta Portfolio 1 2 bt 0,452 0,609 0,806 0,934 0,955 1,075 0,489 0,663 0,824 0,938 0,909 1,071 3 high high high med. med. med. short med. long short med. long 0,743 0,979 1,128 0,782 1,008 1,098 low short 0,519 0,697 0,839 low low med. long 0,862 0,916 0,993 1,084 1,050 1,136 High pre-ranking term beta portfolios have high post-ranking term betas Table 5c 21 Long-short term portfolio regressions: the Daniel-Titman test Panel B: Regression results for high term beta minus low term beta portfolio 2 Rating Duration a bd bt t(a) t(b d ) t(b t ) Adj. R high short -0,047 0,242 0,291 -1,98 7,78 24,94 0,86 high med. 0,007 0,076 0,172 0,17 1,47 7,76 0,47 high long 0,030 -0,108 0,174 0,73 -2,04 8,56 0,55 med. short -0,044 0,296 0,293 -1,48 8,58 21,48 0,79 med. med. 0,030 0,083 0,184 0,86 1,64 9,93 0,55 med. long 0,036 -0,014 0,189 0,83 -0,24 8,51 0,51 low short 0,003 0,476 0,319 0,05 4,15 9,07 0,49 low med. 0,034 0,035 0,188 0,62 0,47 7,64 0,36 low long 0,078 0,101 0,221 1,15 0,94 3,43 0,28 0,014 0,132 0,226 0,59 3,79 18,31 0,79 Average Table 5d 22 Summary: default betas predict returns, term betas less clear So far: Strong relationship between default betas and the cross-section of future stock returns in univariate portfolio setting. Weak for term betas Same default beta results within portfolios sorted on ratings and duration. Weak, but monotonic results for term betas Default and terms betas survive the Daniel-Titman test How about characteristics: ratings and duration? Reversing the sorting order 23 Returns to ratings portfolios within default and term beta portfolios Factor portfolio d t 1 1 Diff 0,071 t(diff) (2,38) 1 2 0,227 0,244 0,249 0,022 (0,57) 1 3 0,309 0,264 0,314 0,055 (1,23) 2 1 0,202 0,233 0,328 0,126 (2,69) 2 2 0,253 0,360 0,279 0,026 (0,76) 2 3 0,295 0,302 0,319 0,023 (0,61) 3 3 3 1 2 3 0,254 0,307 0,341 0,354 0,335 0,930 0,259 0,359 0,770 0,005 0,052 0,036 (0,08) (1,03) (0,64) 0,259 0,274 0,304 0,045 (1,49) Average Table 6a Panel A: Ratings Rating portfolio high 2 low 0,183 0,241 0,255 24 Returns to duration portfolios within default/term beta portfolios Factor portfolio d t 1 1 Diff -0,003 t(diff) (-0,03) 1 2 0,258 0,450 0,232 -0,026 (-0,41) 1 3 0,317 0,258 0,262 -0,056 (-0,98) 2 1 0,246 0,284 0,258 -0,013 (0,19) 2 2 0,277 0,272 0,289 -0,020 (0,43) 2 3 0,332 0,295 0,319 -0,043 (0,94) 3 3 3 1 2 3 0,271 0,346 0,385 0,339 0,326 0,350 0,244 0,313 0,330 -0,027 -0,032 -0,055 (-0,36) (-0,57) (-0,88) 0,293 0,288 0,263 -0,030 (-0,62) Average Table 6b Panel B: Duration Duration portfolio short 2 long 0,208 0,219 0,206 25 Yield-to-maturity In the time-series, yield variables have been shown to be excellent predictors of aggregate bond returns. Fama-Bliss (1987), Campbell-Shiller (1991), Campbell (1995), and Cochrane-Piazzesi (2002) The YTM is likely to be a catch-all proxy for information about default and term risk, call provisions and other bond covenants not captured by the default beta, differences in liquidity, mispricing, and any omitted sources of risk beside the default and term risk. As a result, one would expect the yield-to-maturity to be a significant predictor of average bond returns. 26 Returns to YTM portfolios within default/term beta portfolios Factor portfolio bd bt 1 1 1 2 1 3 Yield-to-Maturity Portofolios 1 2 3 0,082 0,200 0,325 0,143 0,235 0,315 0,200 0,267 0,353 Diff 0,243 0,172 0,153 t(diff) (5,60) (3,29) (3,23) 2 2 2 1 2 3 0,121 0,181 0,233 0,236 0,270 0,288 0,341 0,332 0,361 0,220 0,152 0,128 (4,45) (3,96) (3,30) 3 3 3 1 2 3 0,091 0,207 0,243 0,298 0,302 0,330 0,385 0,437 0,458 0,294 0,230 0,215 (4,14) (4,58) (4,16) 0,167 0,270 0,368 0,201 (5,83) Average YTM strongly predicts returns in the cross-section Table 6c 27 Risk-adjusted returns to long-short YTM portfolios within default/term beta portfolios Panel A: Regression results for portfolios that are long high yield and short low yield 2 t(a) bd bt a bd bt t(bd ) t(bt) Adj. R 1 1 1 2 0,245 0,139 0,076 0,233 -0,018 0,094 5,46 2,86 1,16 3,45 -0,67 3,55 0,03 0,11 1 3 0,148 0,138 -0,004 3,18 2,71 -0,20 0,04 2 1 0,205 0,205 0,028 4,26 2,81 1,10 0,06 2 2 0,136 0,157 0,035 3,71 3,35 2,08 0,06 2 3 3 1 0,128 0,270 0,046 0,254 -0,006 0,055 3,38 3,94 1,03 2,92 -0,30 1,68 0,00 0,04 3 2 0,209 0,191 0,049 4,33 2,75 2,28 0,05 3 3 0,200 0,200 0,030 3,83 2,78 1,14 0,05 0,187 0,167 0,029 5,69 3,66 1,90 0,08 Average Table 7a 28 Sharpe ratios from yield and default beta investing: Is it risk? Portfolio Annualized sorting Ex Ante variable Sharpe Ratio Sh q (H0: Sh=0.6) NonNon- Z-statistic p-value centrality central F (H0: parameter p-value Sh=0.6) l Yield 1,37 3,75 6,81 0,02 2,13 0,02 Default beta 0,79 1,26 6,81 0,73 0,60 0,27 Sharpe ratios from portfolios in tables 4 and 7 (cond. sorts). Table 8 29 Fama-MacBeth regression (1): excess returns The standard Fama-MacBeth regression for month with K factor loadings and M characteristics: K M k 1 m 1 ri rf a Fk ki m Cmi ui where ri-rf is the excess return on the bond, ki is the factor loading/beta for risk factor Fk and m is the slope coefficient for characteristic Cmi. Regressions with individual bonds are potentially more powerful than portfolios sorts. The FM estimate is then the average of the slope estimates across time. 30 Fama-MacBeth regression (2): risk-adjusted returns Returns are risk-adjusted before running the FM regression: r ri rf ˆdi DEF ˆtiTerm * i Where ri* is the risk-adjusted return, and beta hats are the estimated default and term betas. Using these risk-adjusted returns we estimate the following FM regression: r a 1Rating i 2 Durationi u * i * i 31 Fama-MacBeth regression (3)-(4): excess/risk-adj. and purged returns A final test relies on the fact that the coefficients from the Fama-MacBeth regression are returns on portfolios. To purge these coefficients of possible influences from factor realizations, we regress the time-series of slope coefficients on the default and term factors: ˆ j j dj DEF tjTERM u j The intercept from this regression, j, is the purged estimator which can be used to test whether regressor j is related to average returns. 32 FM regressions with characteristics Panel A: Characteristics Dep. var. Raw, Excess Purged, Excess Raw, Risk-adjusted Purged, Risk-adjusted Table 9a Rating 0,011 (1,72) 0,007 (1,30) 0,010 (0,49) 0,012 Duration 0,020 (0,72) -0,020 (-1,75) -0,006 (-0,41) 0,019 Avg. R2 0,16 0,06 33 FM regressions with characteristics and betas Panel B: Betas and characteristics Dep. var. Rating Duration bd bt Avg. R2 Raw, Excess 0,007 (1,25) 0,004 (0,17) 0,235 (2,95) 0,046 (0,28) 0,20 Purged, Excess 0,005 (0,98) -0,024 (-1,75) 0,229 (2,73) -0,109 (-1,02) Table 9b 34 FM regressions with characteristics, betas and yields Panel C: Betas, characteristics and Yields Dep. var. Raw, Excess Rating Duration bd bt Yield -0,015 (-2,56) -0,023 (-0,92) 0,161 (1,91) 0,232 (1,65) 0,160 (5,46) Purged, Excess -0,015 (-2,51) -0,054 (-4,21) 0,170 (2,15) 0,095 (0,97) 0,15 (5,30) Table 9c Avg. R 2 0,24 35 Conclusions Betas, rather than characteristics, appear to be priced in the corporate bond market Default betas vs. ratings: Default betas matter, weak evidence of ratings being priced Term betas vs. duration: Term betas matter, but evidence is weaker Strong (but less surprising) evidence that YTM predicts the cross-section of returns Overall, the evidence indicates that systematic risk factors are priced – arguably in contrast to the 36 equity market. Practical implications A parsimonious empirical model containing two systematic risk variables, default beta and term beta, and the yield-to-maturity could be used to compute the expected bond return/cost of debt. The conventional approach is to rely on bond ratings and maturity or duration as a proxy of a bond’s default and term risk. Our results show that default and term betas are more important. 37 Future research/extension TRACE (and other) data sets allows extension of sample by 16 years using high-quality data Extension to non-investment grade bonds? Possibly larger default beta effect. 38
© Copyright 2026 Paperzz