Indi an Journal of Chemi stry Vo l. 42A, January 2003, pp. 35-4 1 Phase diagram of thermodynamic non-equilibrium state of MgO-B20 3-18%MgCb-H20 system at O°C Li xia Zhu, Shiyang Gao* & Shuping Xia Xi'an Branch, Inst itute of Salt Lakes, Academ ic Si nica, Xi'an, P.R.China,71 0043 Received 3 JUli e 2002 ; revised II SepTember 2002 The supersaturated soluti ons of MgO-B zOr I8%MgC lr HzO with different mole ratios of MgO:B 20 , ha ve been prepared and kept at 0±0. 1°C. The crystalli zati on paths of bori c ac id , Mg-borates and Mg-ox yc hloride from the so luti ons have been determined by chem ical analysis of the solution samples take n at a give n time interval during crystalli zati on. and then the liquid-solid phase diagram of thermodynami c non-equilibrium state of MgO-B zO,- 18%MgC lz-HzO system at O°C has been constructed. In thi s phase diagram, fi ve crystal li zati on fields appear, boric ac id (H, BO,), mca lli sterite (MgO·3 B20 , ·7 .5H20), hungtsai te (MgO'2B 20 ,'9 HP), inde rite (2 MgO'3B 20 , ' 15HcO) and magnesium oxyc hl oride (5 Mg(OH)2· MgCI2·8 H20) . A few of the salt lakes on Qinghai-Xizang plateau are abundant in borate minerals I . Oa Chaidan salt lake belongs to mag nesium su lphate sub-type according to Va li as hko's classification of salt lakes. As indicated in th e previous work 2, the Mg-borate does not generally crystalli ze out until th e dynamic max imum solubility of Mg-borate, and mi ght be enriched in the co ncen trated brine during solar evaporation of the brine taken from Oa Chaidam salt lake. A dyn am ic maximum solubility of Mg-borate in the co ncentrated brine has bee n determined to be 7.5%MgB 4 0 7 , and even hi gher' . Therefore, the concentrated brine containing hi gh borate might be cons idered as MgOB ~ O, -MgCI2-H 2 0 supersaturated soluti on. In order to understand both the formation condition and crystalli zation reaction mechani sm of Mg-borate hyd rates, and utilize the reso urces of the salt lake brine in Qaidam Bas in , it is necessary to study the phase diagram of thermodynamic non-equilibrium state of MgO- B20 ,-MgCI 2-H20 system. The phase diagra m of thermodynam ic non-equilibrium state of MgO-B 2 0 r 2S%MgCITH 2 0 system at lODC has been earlier reported 4 . In this paper, the liquid-solid phase diagram of thermodynami c non-eq uilibrium of MgOB20 .1 -18%MgCh-H20 system at ODC has bee n prese nted. Materials and Methods Both H, BO, and MgC I2'6H 20 are AR grade chemicais produced by Xi' an Chemicals Factory and MgO with soluble act ive were prepared by calcining Mg(OH h AM gCO, '6H20 (A R grade produced by Beijng Chemicals Factory) in an electric test furnace at 600°C for three hours. At first, MgCh·6H 20 was dissolved completely in a given amount of redi still ed water ,and then H3 BO, and at last MgO were added to th e solution, and stirred at 60 DC unti I H.1 BO.1 and MgO were dissolved completely and then filtered. The supersaturated soluti on of MgO-B ~ O.1 18%MgCh-H 20 with different mole rati os of MgO:B 20 3=1:0, 2.5:1 , 1:1, 1:1.5 , 1:2, 1:2.5,1: 3, 1:5, 1:7 and 0: I were prepared as above. All these supersaturated solutions were put in a glass co ntainer with a closed cover and set in a water- alcohol isothermal bath of O±O.I DC wi thout stirrin g. The experiments of crystalli zati on kinetics have bee n conducted by th e method described prev iously). When a solid phase began to crystalli ze out from the so lution, the liquid samples were taken for anal ysis at a given time interval, mea nwhile their dens ity and p H va lue were determinecl until the density remained constant. Finally, the solid phase was separated. was hed with I: I alcohol-glyco l (V/v) mi xed so lve nt, th en abso lute alcohol, and at last with ether, and stored in desiccator till constant weight was attained at room temperature. The sol id phases were identi fi ed by IR spectroscopy , X-ray powder diffraction, thermal analysis and chemical analysis. The chemi ca l analysis methods were as foliows: mag nes ium was titrated with Na-EOTA soluti on in an alkaline co ndition by add ing NH,' H20 + NH.jC! buller solution , boron was titrated by a stand ard so luti on of NaOH in the presence of mannitol and ch lorid e was titrated by a standard soluti on of Hg(N0.1 )2 using diphenylcarbazone as indi cator. 36 IN DI AN J C HEM, SEC A. JAN UA RY 2003 p H-m ete r (P H S-I OA mode l with a g lass el ectrode and ca lo me l e lec trode) was co rrected usi ng a standard so luti o n of 0 .05 M KHC s H 4 0 4 (P H=4.00 at 20°C), 0. 025 M in both KH 2P04 and N a2 HPO" (pH=6.88 at 20°C) a nd 0 .0 I M Na28 40 7 (PH=9. 88 at 20°C) . 200 400 600 800 11h 20 40 60 80 lid 0.8 Resu lts and Discussion Th e crystallization kin etics of th e supersaturated solution of MgO-B 20,l -J 8%MgClr H2 0 systelll at OOC The ex perimental data of c rys ta lli zati o n kin etics are presented in Tabl e I. All the c rystalli zati o n kineti c c urves (Fi gs I and 2) sho w that th e co ncentrati o n o f B2 0 3 o r MgO in so luti o n decreases ex po ne nti a ll y with time until the de nsity o f th e so luti o n does no t ch ange any mo re. The crys tall izatio n processes can be d ivided into three stages: inducti o n peri od, grow th and equilibrium pe riod . In th e first stage, the co mposi ti o n of th e liquid ph ase is hardl y ch anged, and it mean s th at no so lid phase separated o ut. Therefore, during thi s peri od , the kinetic curve is almost para ll e l to time ax is. It is no ti ced that the supersaturated so luti o ns o f MgO :8 2 0 3 = I: I , I : 1.5, 1:2, 2.5: I and MgO-1 8% MgCl r HzO have a lo nger crys ta ll izati o n induc ti o n peri od , w he reas th e o ther supersaturated so luti o n w ith th e res t o f MgO :B2 0 3 mo le rati o has a sho rter c rystalli zati o n indu cti o n peri od. The c rystalli zati o n kineti c curve o f MgO '2 B20 r 18% MgC h -H 20 s upersaturated soluti o n has two indu cti o n peri ods whi ch are parall e l to time coo rdinate axis, a nd it sho ws that w he n th e first crystalli zed so lid ph ase has e nded, th e c ry stalli zation inducti o n peri od of the second so lid phase fo ll ows at o nce. Th e supersaturated so luti o n of M gO ·2.5B 20 318%MgC b-H 2 0 also has two so lid ph ases cry stallized o ut, but there are no cl ear two stages. The supersaturated soluti o n with th e o th er d iffe rent MgO :B 20 3 mo le rati o crys talli zed o ne so lid ph ase o ut. Th e crysta llin e g rowth is the main process, whi ch revea ls the reacti o n rate o f crystalli zati o n. Whe n the crystalli zati o n reacti o n reaches the the rmody namic equilibrium , the co ncentrati o n o f liquid ph ase will no lo nger change. This co mpositi o n of the so luti o n is the conce ntrati o n at the rmody na mi c equi librium state, and it is called the so lubil ity o f the nnody na mic equilibrium . 5 The fo ll o wing mathe matical mode ls were used : Fig. I-CD"o.r t c urves of MgO-13 "O:.- IS'/(, MgCi "-H, O supe rsaturated solut io n at DoC MgO:13 , O , : G 1:2. @ 1:2.5 . • 1:3 . ... 1:5, _ 1:7, t:;. 0: I 50 100 150 lid I 0.15 0.6 ~ - ~ -0E 0.10 '" ..5 , 0.4 ::::: • J U 0.05 0.2 '+ 400 800 1200 ----"-- 160011h Fig .2-C llp,IMgO)-t c urves of MgO-B,O,- IS% MgCi "- H"O s upe rsa tu rated so luti o n at DoC MgO:B,O, : 0 2.5: I. ... I: I . • I: 1. 5, t:;. 1:0 (ii ) Th e mode l o f mo no nuc lear g row th (MB ) laye r co nt ro ll ed -deldt=k(Co- C)4/\ C-Ccy.,y' (ii i) The mode l of co nstant s urface area (MC) - deldt=k(c-c,xY w here k is the rate constant of crysta ll izati o n reac ti o n. (i) Th e mode l of g ro wth (MA ) po lyn uc lear layer con tro ll ed Co is the ini tial co ncentrati o n, c is th e co nce ntrati o n of com po ne nt in so luti o n at a g iver: time t during c rysta ll izati o n, Coo is the CGncentratio n of the rmody nam ic equilibrium . 37 ZHU el al. : PHASE DIAGRAM OF MgO- B20 r I8% MgCI2-H20 SYSTEM Table I- Chemical composition of MgO-B 20 r 18%MgC lr H20 supersaturated soluti on durin g crystalli za ti on of Mg-borates at O°C MgO:8 ~ 0) No Mol:mol Time (h) MgO (w t%) 1:0 2.5:1 I 2 3 4 0 12.2 15 .0 50.0 0.230 0.191 0.163 0.090 I 2 3 4 0 544 760 1336 0.46 0.41 0.32 0.25 2 3 4 5 0.0 0.5 1.0 6.5 10 1.5 2 3 4 0 50 125 158 17.51 17.52 17.52 17.50 3.0 1 2.52 2. 10 1.20 0.33 0.29 0.29 0.26 17.55 17.56 17.56 17.57 5.70 5.09 4.07 3. 14 1.1 8 0.97 0.82 0.55 0.52 17.82 17.85 17.90 17.91 17.94 0.85 0.82 0.68 0.65 1.49 1.47 1.39 1.37 17.90 17.94 18. 10 18. 15 0 42 56 67 77 95 120 130 186 1.03 0.94 0.85 0.77 0.72 0.64 0.50 0.42 0.30 2.65 2.50 2.34 2. 14 1.94 1.67 1.28 1.10 0.71 2 3 4 5 6 7 8 9 0 41 46 48 49 50 52 63 80 1.01 0.98 0.96 0.87 0.74 0.54 0.36 0.32 0.24 2 3 4 5 6 7 8 9 10 11 12 13 0 3.2 6.2 14.2 22.2 27.7 28.7 29.0 29.25 31.25 35.75 57.75 12 1.75 0.90 0.82 0.79 0.75 0.69 0.63 0.58 0.53 0.46 0.41 0.3 1 0. 17 0.07 0:1 1: 1 1: 1.5 I 2 3 4 5 6 7 8 9 1:2 Liguid Ehase Composition phase diagram index MgO 8 20 ) MgC I2 B2O.1 (w t%) (w t%) (11101%) (mol%) I 1:2.5 Density (kg' L- 1) pH Solid MgC I2 (mol %) iU8 96.99 97.48 97.90 98.80 1.0792 1.0786 1.0784 1.0778 8.18 8. 15 8.1 2 SA SA SA 2.38 2.12 2.1 4 2. 15 91.92 92.79 93.79 94.71 1.1619 1. 16 14 1.1 603 1.1594 8.40 8.29 8. 16 8.06 S8 S8 S8 8.30 6.92 5.90 4.03 3.81 91.70 93.08 94. 10 95.97 96 .1 9 1.1648 1.164 1 1.1628 1.1 6 19 '1. 16 15 2.51 2.79 2. 85 3.0 1 3. 12 SC SC SC SC 9. 16 8.20 7.45 7. 13 9. 12 9.1 8 8.80 8.69 8 1.72 82.62 83.75 84. 18 1. 1863 1.1 863 1.1 84 1 I. 1833 7.8 1 7.82 7.60 7.58 SO SO SO 18.25 18.24 18. 16 17.73 17.48 17.34 17.12 16.65 16. 15 10.03 9.33 8.62 8.09 7.75 7. 13 5.84 5.0 1 3.99 14.9 1 14.3 1 13.69 13.02 12. 16 10.8 1 9. 17 7. 89 5.49 75.06 76.36 77.69 78.89 80.09 82.06 85.29 87.10 90.52 1. 2034 1.20 10 1.1953 1.1 888 1.1 84 1 1.1772 1.1 597 1.1591 1.1490 7.2 1 6.95 6.88 6.78 6.79 6.92 6.9 1 6.90 6.9: SE SE SE SE SE SE SE SE 3.46 3.32 3. 15 2.85 2.50 1.74 1.00 0.83 0.69 17.90 17.93 17.94 18.10 18.34 18.65 19.02 19.08 19. 17 9.55 9.39 9.28 8.54 7.47 5.73 3.97 3.59 2.75 18.9 1 18.3 1 17.56 16.20 14.54 10.67 6.44 5.41 4.56 71.54 72.30 73.16 75 .26 77.99 83.60 89 .59 9 1.00 92.69 1.2 100 1.204 1 1.2026 1.1995 1.1 959 1.1 882 1.1 809 1.1 793 1.1780 6.55 6.32 6.32 6. 32 6.28 6.26 6.27 6.28 6.27 SF SG SG SG SG SG SG SG 3.85 3.66 3.49 3.2 1 2.98 2.72 2.38 2.23 1.97 1.68 1.42 0.87 0.56 17.96 18.0 1 18. 14 18.30 18.45 18.60 18.63 18. 53 18.62 18. 75 18.79 18.82 15.68 8.36 7.78 7.55 7.27 6.80 6.3 1 5.86 5.44 4.83 4.41 3.36 1.99 0.98 20.77 20.06 19.26 17.94 16.86 15.6 1 14.00 13.36 12.03 10.43 9.05 5.83 4.6 1 70.87 72. 16 73. 19 74.79 76.34 78.08 80. 14 81.20 83.14 85. 16 87.59 92. 18 94.41 1.2059 1.2046 1.2032 1.2006 1.1 989 1.1962 1.1924 1.1 895 1.1 875 1. 1840 1.1 8 13 1.1742 1. 1564 6.34 6.39 6.44 6.45 6.26 6.23 6.23 6.26 6.23 6.23 6. 13 5.77 6.05 SH SH SI SI SI SI SI SI SI SI SI SI CO/lld INDIAN J C HEM , SEC A, JANUARY 2003 18 Table I-Chemical composition of MgO-8 20 .d 8%MgCl z-H 20 supersaturated sol uti on during crystallization of Mg-borates at O°C-Collld MgO:8 2O.1 Mol:mol 0 T ime (h) MgO (wt %) 1:3 1 2 3 4 5 Density (kg'L- 1) pH Sol id MgCl z (mol %) 7 0 2 42 172 398 614 974 0.86 0.84 0.75 0.62 0.50 0.41 0.33 4.25 4.i I 3.83 3.06 2.44 2.06 1.61 18.02 18.05 18.16 18.40 18.64 18.77 18.97 7.87 7.75 7.05 6.10 5. 11 4.30 3.56 22.48 21.91 20.81 17.40 14.41 12.49 10.03 69.65 70.34 72.14 76.50 80.48 83.21 86.41 1.2051 1.2048 1.2024 1.1954 1. 1902 1.1871 1.1833 5.30 5.32 5.34 5.43 5.48 5.54 5.57 SJ SJ SJ SJ SJ SJ I 2 3 4 5 6 7 0 4 24 34 58 li S 166 0.55 0.53 0.43 0.28 0. 18 0.10 0.06 4.62 4.36 3.49 2.40 1.68 1.19 0.9S 17.44 17.48 17.8 ! 18.24 18.51 18.67 18.78 5. 19 5.12 4.32 3.00 1.97 1.13 0.70 25.21 24 .1 3 20.22 14.78 10.82 7.93 6.6 1 69.60 70.75 75.46 82.22 87.21 90.94 92 .69 1.1958 1.1956 1.1904 1.1824 1. 1772 L I730 1.1712 4.14 4.36 4.50 4.79 5.06 5.17 5.20 SK SK SK SK SL SL 0 0.182 0. 187 0.161 0. 147 0.1 36 0.128 2.20 2.20 l.94 1.68 1.56 1.39 17.71 17.78 17.82 17.87 17.95 17.92 2.04 2.08 1.83 1.70 1.58 1.50 14.23 14. 17 12.72 11.20 10.45 9.45 83 .73 83.75 85.45 87.10 87 .97 89.05 1.1749 1.1749 1.1734 1.1719 1.1716 1.1712 4.54 4.60 4.90 5.1 5 5.26 5.37 SM SM SM SM SM () 1:5 Liguid Ehase Composit ion phase diagram index 8 20) MgO MgCl z 8 20 .1 (wt %) (w t %) (mol %) (mol %) 1:7 2 3 4 5 6 I 12 36 72 303 SA, S8 : 5Mg(OHh'MgCl2'8HzO; SC,SM: H.1 BO); SD,SE: 2MgO'3B zO)'15H 2O; SF,SH.SJ.SK: MgO'213 20 y9H,0; SL: MgO·3B zO)·7.5H 20+ H)BO.1 The calculated method is the sa me as that of literatures. The fi rst point where the so lid phasc crysta lli zed out on the kinetic curves is considered as the initial point and the experimental data were fitted by computer. The selected standard of the calcu lated va lue is th at the calculated error is no more than 5%, Coo valuc is less than or approaches the concentration of the last experimental point. The fitted kineti c equatio ns have been obtained as following. The supersaturated solutions a nd th e kinetic eq uations are as foilows: (cMgO-18 % MgCI2-H 20, -dc/dl=0.1179 0.024 1 I )o n2 ; 2.5MgO· B 20 J -18 %M gC I2-H 20 , -dc/dt=0.044 I (0. 1328-c)2/3 (c-0.05914)121 ; MgO'B 2 0 r 18% MgCl r H 20 , -dc/dt =0.6089 (0.2506C)2/3 (c_0.1518) i80; an d MgO'28 20 J -18 % MgCb!-hO( I ),-dcldt =0.4016 (c-0.5954) 1.21. The kinetic equations for MgO'28 20 y 9H 20 crystalli zed out from the supersaturated so lution of MgO '28 20 3-l8 % MgCIz-H 20 system at O°C are:(the crystalli zed so lid happened to collapse in the course of crystallization, so that kinetic curve is divided into two stage.): The first stage: -dc/dt=0.5784 (0 .5884-c)2/3 (c0.3706)139; the second stage: -dc/dt=4.697 1 MgO' 38 zO)' 7.5H 1O; SG .SI: (0. 1782-c)2/3 (c-0.1002)1.69; MgO ·2.58 20 3! 8%MgC/z-H 20( I ), -dc/dt =0.6379 (0.6725- c)2/3 (c0.3481) 1.47; and MgO·2 .5B 2 0 r 18% MgCl z- H20(2), -dc/dl =1.5400 (0 .2857-c)2/3 (c-0.029 1).154 . The kinetic eq uati on for MgO·38 2 0 3·7.5 H20 crys tal lized o ut from the supersatu raled solu ti on of MgO '3 B 20 r 18% MgCb- H20 System at O°C was (the crystallizati o n kinetic curve can be divided into two stages): The first stage: -dc/dt=O.1213 (0 .7357 _C)2/3 (c0 .3789)213; the seco nd stage: -dc/dt=0.4463 (0.457 1C)4/3 (c_0. 18 19)262; MgO'58 20 r 18%MgCb- HzO , -dc/dl =0. 1541 (0.7935-c)4/3 (c_0. 1215 )173; and MgO·78 20 r 18% MgC/z- H20 , -dc/dt = 141.9584 (0.37 13_C)2I3 (c-0.1982t The results showed that when MgO:8 2 0 .1 in initial solution is equal to 2.5: I , I : I , I :2, 1:2.5, 1: 3( I) and 1:7 respectively, the reaction mechanism of crystallization belongs to polynuclear layer controlled growth, when MgO :B 20 3= I :3(2) and 1:5, mononuclear layer controlled growth. When MgO:B 20 3 = 0: 1 a nd I :2( I), the mechani sm of crystallization are consistent w it h the model of constant surface area. ZHU el al.: PHASE DIAGRAM OF MgO-B 20 r I8% MgC lr H20 SYSTEM 39 Table 2-Chemical composi ti on of solid phases MgO:B 20 3 MgO (wt%) 1: 0 2.5 : 1 1: 1 1: 1.5 I :2( I) 1:2(2) 1:2.5( 1) 1:2.5(2) 1:3 1: 5( I) 1:5(2) l:7 0:1 37.38 37.50 14.22 14.29 10.53 11.90 10.47 11.60 10.52 10.2 1 6.80 ComQosition B20 3 MgCI2 (w t%) (wt%) 17.52 17.49 36.57 36.27 53.76 41.37 53.02 40.22 53.61 54.42 56.32 55.02 56.28 Mol rati o MgO: B20, : MgC I2 : H2O H2O (wt%) 45.10 45.01 49.21 49.44 35.71 46.73 36.51 48. 18 35.87 35.37 43.68 38. 18 43.72 5.05 5.07 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 3.00 2.94 2.95 2.03 2.93 2.00 2.94 3.07 1.00 13.6 13.6 15.52 15.46 7.58 8.87 7.79 9.28 7.62 7.74 3.00 1.00 3.00 Formula 5Mg(OH h· MgCl 2·8H2O 5Mg(OH)2· MgC I2·8H20 2MgO·3B 20 y 15H2O 2MgO·3B 20 y 15HP MgO· 3B20 ..-7 .5H 2O MgO·2B 2Or 9HP MgO ·3B,O,·7.5 H2O MgO·2B 20 3·9H 2O MgO·3B 2Gy 75H 2O MgO·3B 2Or7.5H 2O H3B0 3 H3B03+M gO ·3B203·7.5H20 H, B0 3 Th e crystallized out solid phase During cry sta lli zati on of all the supersaturated so lutions at ODC, there appear five different solid phases, H J B0 3 , MgO·3 B 20 3 ·7.5H 2 0, MgO·2B 20 3 ·9H 20, 2MgO·3B 20 3 · 15H 20 (inderite) and 5Mg(OHh·MgCI 2·8 H2 0 in which H 3 B03 mi ght crystallize out from B 20 r 18%MgCIz- H20 , MgO·7B20 3-18%MgCIz-H20 and MgO·5B 20 J 18%MgCIz- H20 supersaturated soluti ons; MgO·3B 20 3 ·7.5 H20 from MgO·nB 2 0 J- 18%MgCbH20 supersaturated so luti ons where n=7 ,5,3,2. 5 and 2 respectively ; MgO·2B 20 3 ·9H 20 from MgO ·2B 20 r 18%MgCIz-H 20 and MgO·2.5B 20 r 18%MgCb- H20 supersaturated so luti o ns; 2 MgO ·3B 20 J·15H 20 (inderite) from both MgO· B 20 3-18 %MgC I2-H20 and MgO· I.5 B20 r 18 %MgCIc-H 20 supersaturated so lu tions and 5Mg(OH)2· MgCI 2·8 H20 from both MgO-18 %MgCh-H 20 and 2.5MgO·B 20 r 18%MgCI 2H20 supersaturated so luti ons. The chemical analysi s results and ph ase composition of all the so li d phase crystallized out from the supersaturated so lu tio ns are li sted in Table 2. The representative resu lts of X-ray power diffraction shown in Fig. 3, IR spectroscopy shown in Fig. 4, and thermal analytical res ults shown in Fig. 5 are in agreement with the data in li terature 6 . Th e phase diagram of thermodynamic 1101/ eqllilibrium slale of MgO-B 20r18%MgCl r H20 system at ODC -The crystallization path The crystallization path of MgO-B 20 J-18 %MgChH2 0 supersaturated solutions with different mo ie rati os MgO:B20 J = 1:0,2. 5:1 , 1:1 , 1:1 .5, 1:2. 5, 1:3, I :5, 1:7 and 0 : I respectively are show n in Fig 6. It can ~Q) \) c: I'll +' +' E III c: ...ro +' 3800 Fig . 3-FT-JR Spectru m of solid phase (I , 5Mg(O Hh-MgCI 2· 8H20; 2, 2MgO·3B 20, ·15H 20: 3. MgO·3B 20 3·7.5 H20 and 4, MgO·2B 20 3·9 H20) be seen that when MgO:B 20 3 in inti al so luti o ns are I : 1.5 , 1:2 and I :3, the cry stalli zed solid did not chan ge from beginning to the end , in other words, MgO:B 2 0 , mo le rati o in solutions remains co nstant, the point of co mpos iti o n of the soluti on moves close to MgCI 2 corner ill the eq uilateral triangie. When MgO:B 20 J is 1:2 and I :2 .5 , the crystallization paths can be clearl y divided in to two stages, the crystal lization so lid in the first period is MgO ·3 B 20 3 ·7 .5 H2 0 , whereas the crys talli zation solid 111 th e seco nd period IS MgO·2B 20 3 ·9 H20 . INDIAN J CI-IEM, SEC A, JANUARY 2003 40 IIgCI. '"0. ~ >. +' C II> 24 +' C 32 B~,L- Fig. 4--XRD patterns of solid phase ( I, SMg(OH)2· MgCI 2·8H20: 2. 2MgO'3B 20 ,' ISH 20: 3, MgO·2B 20,.9 H20 and 4, MgO'3BP, ' 7.5 H20) TGI% 100 0 100 -6 80 80 60 40 0 200 -12 400/"C 400 /"c 0 100 100 4 4 -6 85 2 2 200 400 / "C 80 60 70 0 60 -12 0 40 100 200 300 / "C Fig. S- T he TG. DTG and DSC of so lid phase ( I, SMg(OH )"'MgCI"'8H 20: 2, 2M gO·3B 20 ,·7.SH 20: 3. MgO' 3B 20 ,' ISH "O and 4. MgO'2B 20 y 9H 20) The phase diagralll of thermodynamic 11 0 1/.equilibrium state The ph ase diagram of stabl e equilibrium so lubility Na+, K+, Mg 2+//Cr, SO/ -H 20 system at 25°C has been given by Vant'hoff. N.S. Kurnak has presented partly th e so lar phase diagram of the same sys te m by evaporation of sa lt lake brine which is si milar to concentrated sea-water .The whole metastable phase diagram of the same syste m has been completed with the method of isothermal evaporation by Jin Zuomei 8 . It is obviously noticed that there exists the supersaturated area between the stable equilibrium solubility phase diagram and the metastable phase diagram. In order to understand the supersaturated ____~____~~____~____~~__~W~ J2 24 16 8 Fig. 6- The crystalli zation paths of MgO- B"O,- 18%MgCi 2-H"O supersaturated solutio n with different mo le rati o at O°C MgO:B 20 3 : 0 2.S :I , 01:1 I:I.S , @ 1:2 . • 1:2.S. 6. 1:3. A I:S. 0 1:7 solubility phe nomena, it is necess ary to study the liquid-solid phase diagram in supersaturated area. Based on the crystallization paths of th e supersaturated solutions with different MgO:8 20 } mole ratios, the liquid-so lid phase di agram of thermodynamic non-equilibrium state of MgO-8 20 ,l8 % MgCh-H 2 0 system at O°C has been drawn in an equilateral tri ang le (Fig. 7) . The three corners of th e triangle represent component MgO , 8 20 3 a nd MgCl 2 respective ly. The ten crystallization paths of the supersaturated so luti on of MgO-8 20 3-l 8% MgCI 2- H20 sys tem with differe nt MgO:8 2 0 } mole rati os have been shown in eq ui lateral triangle. With the boundary o f MgO : 8 20 )= I : I, the left side is bori c ac id or bormes, th e ri ght side is magnesium oxych loride. The initial concentratio n of 8 2 0 3 in MgO SB}0 3-18% MgCI2 supersaturated so lution is hi ghest. and it is six times as hi gh as that of the equilibrium co nce ntration. The borate supersaturation extent fo r MgO'S8 20 318 %MgC1 2 so lution is the g reates t and its crystallizaion path is the lon ges t. The point A on th e s ide lin e of MgCh and 8 2 0 3 gives the eq uilibrium solubility of H 3 80 3 in the 18% MgC I2 -H 20 so luti on, the points B and C both re presen t the co mpos iti on of saturated solution with two S;1!tS: H ,80 3 and MgO '2 8 20 y 9H 20 , MgO'28 20 y 9H 2 0 and SMg(OHh' MgCI 2 '8 H20 respectively, which were determined by the isothermal equilibrium meth od of the synthet ic complex (Table 3). The thermodynamic nonequilibrium ph ase diagram co ns ists of five crystallization field s, corresponding to 1-1 3 80 3 , ZHU et al. : PHASE DIAGRAM OF MgO-B 20 r I8% MgCl r H 20 SYSTEM 41 Table 3--Composition of thermqdy na1n ic equilibrium poi nt " Equlibrium po int MgO (wt%) Composition B20 3 (wt%) MgC I2 (w t%) Phase diag ram index MgO MgCl 2 B2O.1 (mo l%) (mo l%) (mo l% ) 0.52 17 .94 3.8 1 96.1 9 B 0.03 0.57 18.77 0.44 3.97 95.66 C 0 .3 1 0.46 18.85 3.75 3.05 93.20 D 0.09 17.50 1.20 A B,O, L.....---;t;:------;;~---f::---~--~ MgO Fig. 7- The The phase di agra m of thermodynami c no nequilibrium stable of MgO-B 20 r 18%MgC lr H20 at ODC (I , H.1 BO.1; 2, MgO·3B 2 0 3 ·7.5H 20; 3, MgO·2B20.1·9 H20; 4, MgO·3B 20.1· 15HzO and 5, 5Mg(OHh· MgCl 2·8H 20 1 MgO·3B z0 3 ·7.5H zO, MgO '2B z0 3 '9H zO, 2MgO' 3B z0 3 ' 15HzO (inderite) and 5Mg(OHh·MgCb·8H 2 0, in whi ch the phase fi e ld of MgO·3B z0 3·7.5H zO is the largest, whereas H 3 B0 3 the small est. This showed that the supersaturation extent of H 3 B0 3 in 18%MgC lzH20 is the smallest and the supersaturation extent of MgO'5 Bz0 3 in 18%MgCb- HzO is the highest. It is clearly noticed from Fig. 7 that the phase diagram of thermodynami c non-equilibrium state in MgO-BzOr 18%MgCIz-H 20 system at O°C consis ts of three parts. The first one ABCD is the thermodynamic eq uil ibrium solubility, the curve AB represent s eq uilibrium solubility of H3 80 3; curve BC MgO'2 8 z0 3 '9H zO, and curve CD- 98 .80 5Mg(OHh·MgCIz·8H 20 . The second part is ex pressed by dotted lines EFGHIJ which is called as metastable solubility, and the curve EF represents metastable solubility of H3 B0 3; curve GH- MgO'38 20 :1" 7.5H 2 0 , curve HI-2MgO '3B z0 3 ' 15H 2 0 (inderite), and curve IJ- 5Mg(OH h· MgCIz·8H zO. The third part between thermodynamic equilibrium sol ubility and metastable solubility is the supersaturated area which consists of five fields, corresponding to H3 80 3 , 2MgO ' MgO·3B 2 0 3 ·7.5H 20 , MgO'28 20 3'9 HzO , 38 z0 3' 15H zO and 5Mg(OHh'MgCh'8H 20 respectively. The liquid-solid phase diagram of thermodyn amic non-equilibrium state of MgO-B20 3-18 %MgCb-H cO system is different from the stable equilibrium solub ility phase di ag ram of the same syste m by G.Bagirov 9 in wh ich there are ten phase field s. References I Gao S Y, Cheng J Q & Zha ng M P, Adv Sci Chill Chelll . 4 ( 1992 ) 163. 2 Gao S Y, & Li G Y, Cilelll J Chill Ullil'erity , 3 ( 1982) 14 1. 3 Gao S Y, Fu T J & Wang J Z, Chill J illorg.Cilelll . 1 ( 1985 ). 97. 4 Gao S Y, Yao Z L, & Xia S P, Acta Ch illi Sill (C hin ese). 52 ( 1994), 10. 5 Gao S Y, Chen X A & Xia S P, Acta Chilli Sill (C hin ese) . .+8 (1990), 1049. 6 Li J, Ph.D. Dissertatioll , Lan zho u Universit y, 1994. 7 vant'hoff J H. V llte r SlIeil/lII gell der Biidllllgsverhaitllisse der Ozeallischell- Sai zabiagenlllgell , IIsbesolldere dos stas.ljilrille Saizes,(verlag Chemie G.M.B .H, Le ipzig) (19 12). 91. 8 J in Z M. Xiao X Z & Li ang S M, Acta Chilli Sill (C hinese). 3X ( 1980), 3 13. 9 Bagirov G, Sedeliniron G S & Rza-Zade P F. ZII. Neorg.Khilll. 10 ( 1965) 19 t 8.
© Copyright 2025 Paperzz