Full file at http://testbanksite.eu/Applied-Mathematics-for-the-Managerial-Life-7th-Edition-Solution 1 1.1 FUNDAMENTALS OF ALGEBRA Real Numbers Concept Questions page 6 1. a. 4 (answer is not unique). c. 2. 3 4 1 2 b. 0 d. (answer is not unique). b. 0 5 1 3 4. a. No. For example, 4 4 5 2 2 5 4 b. No. 5. If ab 2 5 ac 4 a 3 b c b c . 7 a 4 b 2 3 1415 c. 5 2 5 3, and 8 5 425 5 2 5 . 0, then neither a nor b is equal to zero. If abc Exercises c. π 0 3333 3. a. The associative law of addition states that a b. The distributive law states that ab 3 (answer is not unique). 0, then none of a, b, and c is equal to zero. page 6 1. The number 3 is an integer, a rational number, and a real number. 2. The number 420 is an integer, a rational number, and a real number. 3. The number38 i sarationalrealnumber. 4. The number 5. The number 11 is an irrational real number. 6. The number 7. The number 2 is 8. The number2 9. The number 2 11. False. an irrational real number. 421 is a rational real number. 4 125 sarationalrealnumber. i 5 is an irrational real number. i sanirrationalrealnumber. 10. The number 2 71828 number. is an irrational real 2 is not a whole number. 12. True. 13. True. 14. True. 15. False. No natural number is irrational. 16. True. 17. 2x y z z 2x y : The Commutative Law of Addition. 1 Full file at http://testbanksite.eu/Applied-Mathematics-for-the-Managerial-Life-7th-Edition-Solution 2 1 FUNDAMENTALS OF ALGEBRA 18. 3x z 2y 19. u 3x 3 20. a2 u: The Commutative Law of Multiplication. 3 b2c 21. u z: The Associative Law of Addition. 2y a2b2 c: The Associative Law of Multiplication. 2 2u u : The Distributive Law. 22. 2u 2u : The Distributive Law. 23. 2x 3y 24. a 2b x a 25. a [ c 26. 2x y 27. 0 2a 28. If x 29. If x 30. If x 4y a 3b d ] x 4y 3y a a 3x 3b 3b c : The Associative Law of Addition. a 2b 3b : The Distributive Law. d : Property 1 of negatives. 2y y 2x 3x 2y : Property 3 of negatives. 0: Property 1 involving zero. y x 2 y 2x 2x 2x 0, then x 0, then x 5 0, then x 9 y or x y. Property 2 involving zero. 52 2, or x 0 or x 9 . Property 2 involving zero. Property 2 involving zero. 2. 31. x x 1 3 2x 1 x 3 2x 1 x 3 2x 1 x 3 x 2x 2 x 32. 33. a b b 34. x 2y 3x y 35. 36. a 6x .Property2ofquotients. 1 2x 1 .Property2ofquotients. a 2y x 3x a 2 2y y b . Properties 2 and 5 of quotients. a b y 3x 2 x x 2y x . Properties 2 and 5 of quotients and the Distributive Law. 2 b bc c a b . Property 6 of quotients and the Distributive Law. b c b x y x 1 1 b b b a a ab b a b a b c 1 y x x x 37. False. Consider a 1 .Property7ofquotientsandtheDistributiveLaw. 12 2 and b . Then ab 1, but a 1 and b 1. 1 38. True. Multiplying both sides of the equation by a (whichexistsbecausea 39. False. Consider a 40. False. Consider a 3 and b 2. Then a 3 and b 2. Then b 3 a b 2 b 3 2 b a 3 a . 2 2 3 1. 1 ab 0),wehavea 0. a 0 ,orb Full file at http://testbanksite.eu/Applied-Mathematics-for-the-Managerial-Life-7th-Edition-Solution 3 1.2 POLYNOMIALS 41. False. Consider a 1, b 42. False. Consider a 1.2 2, and c 1, b a 3. Then 2, and c b c 1 a b c 3. Then 2 3 a 4 b 1 3 a b 1 2 1 2 3 2 c 3 6 c 1 2 3 2. . Polynomials Concept Questions page 12 1. a. No, this is not a polynomial expression because of the term of 2 x in which the power of x is not a nonnegative integer. b. Yes c. No. It is a rational expression. 2. a. A polynomial of degree n in x is an expression of the form an xn an 1 xn 1 nonnegative integer and a0 a1 an are real numbers with an is x4 2x3 2x2 5x 7. b. One polynomial of degree 3 in x and y is 2x 3. (a) 1 b2 2b Exercises 1. 34 3. 5. 6x y2 b2 2ab c. a2 3 3 3 2. 81. 5 2 2 2 8 3 34 9. 23 11. 13. 3y 2x 3 3 3 3 3 3 5 3 2 3 4. 27 2 3 25 28 2 3y 3 3 5 3 5 81 125 . 3 4x 2x 5 16. 3x2 5xy 2y 17. 5y2 2y 1 2x2 3x 4 3y 6 5 243y5. 2x 2x2 4 y2 4x 5x 2x 6 5y2 8 6 6x 7x2 4 2x2 3xy 4y x2 3 2x2 3. 2x 3x2 2x2 3 2 2 2 2y 1 3x 4 x2 3 3 12. 2x 3 14. 3x 2 5x 3xy 4y 2x 2y 5y2 8 6 3x2 4 5 5 3 2x 2 2x y2 2x2 5x 10. 4y 243. 5 32x5. 3x 2x 2xy 2y 125 . 3 16 . 5 3 x2 64 27 64 3 7x2 4 4 3 4x 4 16 . 4 9 4 2 3 5 2x2 y2 4 5 2 3 2 9 4 5 10. 5xy 3 4 4 8. 256. 3 4 6. 81. 3 5 15. 7x2 18. 2 2 3 3 b2 32. 3 3 7. 6y3 (answer is not unique). page 12 3 2 b. a2 4x2 y xy 3y a1 x a0, where n is a 0. One polynomial of degree 4 in x 2 5x 2y 4. 1 8 4x 5 4 4y2 3 7x 9x2 2y 5. 3x 9. 1. Full file at http://testbanksite.eu/Applied-Mathematics-for-the-Managerial-Life-7th-Edition-Solution 4 1 FUNDAMENTALS OF ALGEBRA 2 4x3 3x2 1 7x 6 2 8x 2 19. 1 2x3 1 2x2 0 8x 2 4x3 2 1 2x3 20. 1 4x3 1 2x2 3 2 0 8x3 2 1x 1 7x 4 2x2 1 4x3 1 8 3x2 2 5x 1 2x2 2 2x 21. 3x2 6x5. 2r s2 23. 2x x2 2 24. x y 2y 3x 25. 2m 3m 4 4r2s2 4x3 2x3 2x y2 3x2 y. m 3x 5 b 27. 3 2a b 4 28. 2 3m 1 3 2 2x 30. 3r 1 2r 5 3r 31. 2x 3y 3x 32. 5m 2n 5m 33. 3r 34. 2m 35. 0 2x 5m 3m 1 2y 3r 4r 2m 0 3x 2 1y 2x3 6x 3b 4b 6n 18m 6n 2. 2 6x2 4x 9x 6r2 5 3y 3x 5m 4r 3s 2n 3n 3m 0 2x 0 3x 2r 6x2 6r2 4x y 12r2 2n 5x 13r 6. 5. 6y2 9x y 25m2 3n 9x. 7b. 6 5 6x2 2y 2n 2s 15r 14a 9x2 15mn 6x2 6n2 10mn 9r s 8r s 6s2 12r2 6m2 4mn 9mn 6n2 2 1y 1 2y 0 3x 6y2. 5x y 25m2 rs 6m2 6n2. 6s2. 5mn 0 06x2 2 1y 5mn 6n2. 0 42x y 2 52y2 3 2m 1 7n 4 2m 1 3n y 3x2 38. 3m 2n2 39. 2x 3y 2 40. 3m 2n 2 41. 2u 2x 3x2 2y 2m2 3 2m 2x 3m 2u 2 2 2 2x 2 2u 3m 2 4 2m 3n 3y 2 2n2 2n 4u2 6x3 2m2 2 2 . 4x2 2 1 7n 9m2 3x2y 4xy 3n 6m3 12x y 9y2. 12mn 4 2m 2 21n2 7 14mn 2y 3y 2n 1 3n 4 16mn y 3x2 2y 3m 2m2 3n 2 52y2. 0 06x y 13 44m2 2x 15x 12m 3n 3m 9x2 3x 3s 2n 9m. 8a 2y 5m 7m2 6a 2r 3x m 8a 3 5 2x 3s 2 2 2r 3n 4b 6m 3x 2y 6x3 0 06x2 37. 4x3 5. 4x. m2 8m 3b 2n 3x 2x3 3 6a 3 3n x2 2a 4m 4r 6m2 2x 2x 2s 4x3 4x 1 29. 36. 2 1x 1 2x 16r3s5. 2s m 2x2 3x 0 36x y 8 2 2x3 22. 26. 0 2 1x 1 3 1 2x2 8 2. 0 8x3 3 2 1 2x3 6 2 4n2. 9mn 1 3n 13 44m2 2 98mn 2y2. 4m2n2 6n3. 2 21n2. Full file at http://testbanksite.eu/Applied-Mathematics-for-the-Managerial-Life-7th-Edition-Solution 5 1.2 POLYNOMIALS 42. 3r 4s 43. 2x 1 44. 3m 2 2 45. 2x 3y 2 2 3r 4s 3r 3x 2 x2 1 2m 2 2y 9m2 4 1 3x 9r2 4x2 3 m 1 2 4s 2 16s2. 4x 1 3x 2x2 12m 4 2m 2m2 x 2 4x2 y 4x2 46. x t2 47. y 2y 2t 2x y 3 3x 2t2 4 x y t2 1 3m2 49. 2x 2m2 1 3x 50. 3m [x m 2 3m 4 2x m [ x 2x 9t2 2t 4. 3m2 2m2 3m 4 6m4 9m3 2x 3x [x 2x 4x 1 5 ] 52. 3x2 x2 x [x 1 2 2 x 3x 53. 54. 2x x 3 2y 2 x ] 1 2 4 x 2 x 1 x 3 2x 4 y 3m x 4x 1 1 ] 2 3x2 1 4 x 2 3y x x2 3x [2x 2x 56. 3 3x x 2y 3 x ] 3x 3 2 x 2x2 3x 2y x 2 3x x 4 x 2x 2x 2y 2x 3 2x 3m 1 m 3m 15 4 1 x ] 3x 1. x 2 2x 2y 3x 3y 3 3x2 7x y 2y2 4t3 8t2 t2 6m4 4 9m3 2t 3y 3. 4 12m2 2m2 3m 4 4x2 12x 4] 2 x 2m 2x 3x x m 5 4m 22 2x 2 [m 11 3 3m x 1 ] 1 x 2 3m 2x x 2 2x 5 2 1 ] 1 1. [2x x 1 x 2x x 1 2x 4] 7m 2x 22. 1 2 2 2 2x2 3x 32 x 1 2 x2 x 1. 8 1 3 x2 16 2x x2 10x 50. 3y2 2x2 3xy 2x 5x2 5xy 2y2 2x 3 9 3x2 48 2x 2 x2 3xy xy 3xy 2x 7 2 2y 2x 4y 2. 2t4 3m 1 2 2x2 3x 2y [3x 4x 2m 9x2 y 2m2 3 3 2x 1 2 [m 3y 6x y x 4 2x x2 2 10m. 6x y 2x y 3x 1] 2 9y2 2. 4. 2x x 4xy 4y2 1 3m 2x m 2 [2x 2 55. 2x 2x 14m2 x x x 2t 4t3 3m 51. x t2 2t2 4 1 ] 3 [2m 2y2 x 11m2 4 9y2 6xy 2x2 3 12x y x y 3x2 2t 2t4 48. 1 2 2 4xy 6y2 3x 2x 9x 2x2 2x2 x y 3 3 2x2 x 3 3x 3 2x 3 x2 4xy x2 4x2 4xy 16x y 2x 11x2 4y2 4y2 y2 3 10x 9x2 2x. 12xy 9x2 12x2 22x3 3 4y2 12xy 48x y 4y2 3y2. 20x2 6x. 4x2 y2 4x2 y2 Full file at http://testbanksite.eu/Applied-Mathematics-for-the-Managerial-Life-7th-Edition-Solution 6 1 FUNDAMENTALS OF ALGEBRA 57. The total weekly profit is given by the revenue minus the cost: 0 04x2 0 000002x3 2000x 0 02x2 1000x 120,000 0 04x2 0 000002x3 58. The total revenue is given by x p x 0 0004x 10 2 the revenue minus the cost: 0 0004x 10x 0 0001x2 0 2t2 59. The total revenue is given by where 0 t 12. 0 5t2 150t 0 000002x3 2000x 0 02x2 0 02x2 1000x 1000x 120,000 120,000. 0 0004x2 4x 400 10x. Therefore, the total profit is given by 0 0005x2 6x 400. 0 7t2 350t thousand dollars t months from now, 200t 60. In month t, the revenue of the second gas station will exceed that of the first gas station by 0 5t2 0 2t2 200t 0 3t2 150t 0 5t2 61. The difference is given by 12 3t t 50t thousand dollars, where 0 54 0 75t 38 5 436 2 24 3t 365 12. 12 0 5t2 2 25t 15 5 6t2 27t x3 x 186 dollars year. 62. The gap is given by 3 5t2 63. False. Let a 2, b 3, m 26 7t 2. Then 23 3, and n 32 8 9 3 5t2 72 2 2 4t 3 2 3 71 2. 65. 64. True. 65. False. For example, x2 1 is a polynomial of degree 2 and x is a polynomial of degree 1, but is a polynomial of degree 3, not 2. x3 66. False. For example, p p q x3 x 1 1.3 1 is a polynomial of degree 3 and q x3 2 x 3 is a polynomial of degree 1. x x3 x2 1 x 2 is a polynomial of degree 3, but Factoring Polynomials Concept Questions page 18 1. A polynomial is completely factored over the set of integers if it is expressed as a product of prime polynomials with integral coefficients. An example is 4x2 2. a. a Exercises 1. 6m2 3. 9ab2 a2 b 9y2 2x b2 ab 3y b. 2x a 3y . b a2 ab 4t3 t b2 page 18 4m 2m 6a2b 3m 3ab 5. 10m2n 15mn2 7. 3x 2x 1 3b 20mn 5 2x 2. 4t4 2 . 1 4. 12x3 y5 2a . 5mn 2m 2x 12t3 1 3n 3x 4 . 5 . 6. 6x4y 8. 2u 3 16x2 y3 4x2y2 2 3 . 4x2 y3 2x2y3 5 3 2 3x y2 4 . 2x2y 3x2 3 2y 2 y2 . 2u 5 . Full file at http://testbanksite.eu/Applied-Mathematics-for-the-Managerial-Life-7th-Edition-Solution 7 1.3 FACTORING POLYNOMIALS 9. 3a b 2 2u 10. 4u 11. 2m2 6 3x 17. 4a2 b2 19. u2 2 x 6u2 b 2a b . u 2 2 u 2 2ab 21. z2 4 is prime. 23. x2 6x y 25. x2 3x 2 12. 6x2 x 14. 2u2 5u 16. m2 2m x x 18m 3a 1 3x 2 3u . 1 2 12 2x 2u b 4ac u 4 2x y 2ad . 1 . 3 . 3 is prime. 3 4x2 y2 3 2x y . 2ab 5c 2ab 5c . 2 25 is prime. 12u 9 2 2u 2 3 . 1 . m2 3m 2u 3y2 24. 4u2 4 d 2c . y2 is prime. 3m2 2u 22. u2 4 d ] 2c 18. 12x2 u 5c 2a 2u 2y . 2a 25c2 26. 3m3 b [3a 6 . x 3y 2 4u m 1 d 2c 1 is prime. 2 20. 4a2b2 2 d 2c 2u 2m 6y2 xy 15. x2 2a 6u2 11m 13. x2 d 2c m 6 m 3m m 3 2 . 27. 12x2 y 10x y 28. 12x2 y 2x y 29. 35r2 r 2 30. 6u 12y 24y 12 6 31. 9x3 y 4x y3 xy 32. 4u4 9u2 35. u2 a 36. 2x 3 2b x y 2 5x 6 2y 3x 2 2x 3 . 6x2 x 12 2y 3x 4 2x 3 . 5r 3 . 2 xy 3x 3u 4y2 4u2 2 2 2 9 2 . xy 9 4y 16u4 2 6x2 2u 9x2 x2 9 4 3 3 16y2 34. 16u4 2y 7r 9u 33. x4 2y u2 x2 4u2 2b 2 [ a 8x x y2 2 2b 2x 2x y 37.8m3 1 2m 3 1 2m 2u 4y 2 a 1 2 3x x y 2y 2 2 3 x2 4y . 2 3 2 a 2b ] [ a 2 4 x y2 y x 2y2 3x 4m2 2m 1 . u2 2u 4u2 3 2x 2y2 . x 3x 3 2b ] y 2y . 2u 4u2 a 2b 2 2y 2 x 3 3 . . 4b y2 2a 8ab. x y 2 x y2 Full file at http://testbanksite.eu/Applied-Mathematics-for-the-Managerial-Life-7th-Edition-Solution 8 1 FUNDAMENTALS OF ALGEBRA 38. 27m3 8 3m 39. 8r3 27s3 2r 40. x3 64y3 41. u2 6 42. r6s6 3 3 x3 8u2 u2 8s3 s3 6ay bx 2by 46. 6ux 4uy 3 49. 4x3 9x y2 50. 4u4 51. x4 3x3 52. a2 b2 a a c 54. ax2 1 ab y 2u 3x 2 2 u 2 x 3y 2 u2 b a au2 c by2 xy b 4 . 1 . u2 2y b . 3a 3x u 2 . 2y 2u . u2 u 2 . . y 4x2 2x x b au au cu c ax2 xy abx y u by2 ax 2 3 2 u2 2u x3 x y . 2 . b 1 3y y . 3 a 2 2x 2u 3 a 9y2 x 3y 2 3 x 2r2s 1 2y 2 9y2 2x 2 x 2y 2 2 2x 2 u2 2 u2 r4s2 2 3 3x 4x2 3 u2 2y u2 4u2 x2 x 2 x x3 b u2 3 4 a 53. au2 2y 4 . s3 r2s 3 2 u4 4 x 9y3 b x2 3 2 2 23 3 9s2 . 16y2 . 4 2 r2s 2u2 u2 6 4x y 3a 2 4 2x x2 x2 2 3 6r s s3 2u4 x 2 4r2 8 2x 4x2 y 11u2 3s 2 45. 3ax 6 2r u2 4 2 3 8 2u2 u2 4 . 6 4u2 48. u4 6m 4y 44. 2u4 u2 9m2 x r6s3 3 2 3 6x 4 3s 3m 4y 43. 2x3 47. u4 x2 23 a b c u x by 56. t3 1 . u 1 y x au 1 by c . x by ax y . 55. P Pr t 57. 8000x 59. k M x 61. R P 1 100x2 kx2 60,000 kx 100x rt . x . 100x 80 M x . x2 200 6t2 15t t t2 6t k Qx kx2 kx Q x . 0 1x2 500x 58. R 60. x 300 x . 1 62. T 2 1 2t 63. V V0 V0 0 T 273 2V73 273 T . 64. kD2 2 0 1x x 1 t3 39t2 360t t 15 t D3 3 D2 k 2 5000 . 2t 24 . 3 . 15 . t2 39t 360 Full file at http://testbanksite.eu/Applied-Mathematics-for-the-Managerial-Life-7th-Edition-Solution 9 1.4 RATIONAL EXPRESSIONS 1.4 Rational Expressions Concept Questions page 25 1. a. Quotients of polynomials are rational expressions; 2x2 2 3x 1 . 4 3x P b. Any polynomial P can be written in the form 1, butnotallrationalexpressionscanbewrittenasapolynomial. PR 2. a. QS ; PS RQ Exercises 1. 28x 7x3 3. 4x 5x 4 2. x. 4 x 12 15 9. x x2 6x 12. 8r3 s3 2r2 r s s2 17. y2 xy 1 3x2 2 15 xy x2 xy y2 2r s 2r s r 2x8 16x5 8x2 15x4 5x6 10y 4 2x2 7x 10. . 1 4r2 6 6 2m 1 2 18m 9 9 2m 1 3 2 4y 22 y 4y 2 62 y 3 y 1 11y 4y 3 12 4r 2 2 16. 2 5x 5x 18. 25y4 3y2 12y 5y3 6x5 4x 6x5 7x3 21x2 7x3 21x2 4x 4y 12 x 6 x2 x 6 y 2 y 2 2y 3 . 2y 1 3y 1 2y 3 2y 3 . 2y 3 4 y 2 3y 3 3 3 . 4 2 y . y 6 20. 4 y 5 3y 6 2y 1 2y 3r 2 2r 1 6 r 2 2 r 2 2 2r 1 2x2 y 3y 1 2y 3 9 2y 2 y 1 y 1 2y 3 2y 1 8 6 y 24 12 3 2 6r 4y y 8y y 2 2 r s 6 2 m 9 8y2 8y 3 . s2 2r s 2. 6 x 6 6 3 s 3 m x 12 m 2y s2 3x 5 x 2y 3 x y . x y. 4r2 16x5 r 8. 14. 6 6r2 16 2 18y2 y2 s 3x3 5x 2r 22. 1 . x 1 x. 3m 2 6. x 2x x2 6 21. x y 6 19. x 1 x 1 x4 3x x 2y 2m 1 2x 2r 8 3x3 8x2 2 x x2 2x x 3 x 3 2x 1 x 3 3 11. 15. . 1 x 2 x 2 2 2 5x 6x3 32 4. 3y4 2 x3 y 3 13. 5 2x 9 2x2 4 3 3x x 3x x2 3 5 x 2 5. 6x 2 3x 6x 7. Q R ;P R page 25 2 2 P Q b. x 3 x 2 2x 3 2x 3 x 2 x 3 3r 2 2 x 2 3 x 2 x 3 . x 3 4 y y 3 y 2 2y 1 5 2x . 3 3 y 2 2 1 2y 12 y 3 2y 1 2 3 4 2y 3 6 y 4 2 y . y 4
© Copyright 2026 Paperzz