slides

Maximum Matching in the
Online Batch-Arrival Model
26th June, 2017
SAHIL SINGLA
(CARNEGIE MELLON UNIVERSITY)
JOINT WORK WITH EUIWOONG LEE
2
TWO-STAGE MATCHING PROBLEM
โ€ข GRAPH EDGES APPEARS
IN TWO
BATCHES/ STAGES
๏‚ด ๐† = ๐† (๐Ÿ) โˆช ๐† (๐Ÿ)
โ€ข ๐† (๐Ÿ) APPEARS IN STAGE 1
๏‚ด Pick Matching ๐— (๐Ÿ) in ๐† (๐Ÿ) (Unknown ๐† (๐Ÿ) )
๏‚ด Unselected Edges Disappear
โ€ข ๐† (๐Ÿ) APPEARS IN STAGE 2
๏‚ด Select ๐— (๐Ÿ) in ๐† (๐Ÿ) s.t. ๐— (๐Ÿ) โˆช ๐— (๐Ÿ) is a Matching
โ€ข GOAL
๏‚ด Maximize size of ๐— (๐Ÿ) โˆช ๐— (๐Ÿ)
๏‚ด Competitive Ratio:
โ€ข GREEDY IS HALF COMPETITIVE
๐„[๐€๐‹๐†(๐† (๐Ÿ) , ๐† (๐Ÿ) )]
๐Ž๐๐“(๐† (๐Ÿ) , ๐† (๐Ÿ) )
CAN WE BEAT HALF?
THE Z GRAPH
3
โ€ข
GRAPH APPEARS IN TWO BATCHES
๏‚ด
โ€ข
๐† (๐Ÿ)
โ€ข
๐† (๐Ÿ) APPEARS
๏‚ด
Pick Matching ๐— (๐Ÿ) in ๐† (๐Ÿ) (Unknown ๐† (๐Ÿ) )
๏‚ด
Unselected Edges Disappear
๐† (๐Ÿ) APPEARS
๏‚ด
โ€ข
๐† (๐Ÿ)
Select ๐— (๐Ÿ) in ๐† (๐Ÿ) s.t. ๐— (๐Ÿ) โˆช ๐— (๐Ÿ) is a Matching
GOAL
๏‚ด
๐† (๐Ÿ)
๐† = ๐† (๐Ÿ) โˆช ๐† (๐Ÿ)
Maximize size of ๐— (๐Ÿ) โˆช ๐— (๐Ÿ)
โ€ข DO WE PICK EDGE IN ๐† (๐Ÿ) ?
๏‚ด Pick w.p.
2
Case 1: E[Alg]= 2
or
3
3
& OPT=1
Case 2: E[Alg]= 2 3 + 1 3 โˆ— 2 & OPT=2
โ€ข FRACTIONAL MATCHING?
Case 1
Case 2
๏‚ด Easier than Integral
4
OUR RESULTS
THEOREM 1:
FOR TWO-STAGE INTEGRAL BIPARTITE MATCHING, THERE EXISTS A
๐Ÿ
๐Ÿ‘ COMPETITIVE TIGHT ALGORITHM.
THEOREM 2:
FOR TWO-STAGE FRACTIONAL BIPARTITE MATCHING, THERE EXISTS
AN INSTANCE OPTIMAL COMPETITIVE ALGORITHM.
INSTANCE OPTIMAL: Given ๐† (๐Ÿ) returns ๐›ผ s.t.
โ€ข Gets ๐›ผ โ‹… ๐‘ถ๐‘ท๐‘ป for every ๐† (๐Ÿ)
โ€ข For every Alg, โˆƒ๐† (๐Ÿ) where ALG โ‰ค ๐›ผ โ‹… ๐‘ถ๐‘ท๐‘ป
5
PRIOR WORK
โ€ข ONLINE ARRIVAL
๏‚ด Single arrival in each step (linear # stages)
๏‚ด Immediate & Irrevocable decisions
๏‚ด Vertex Arrival or Edge Arrival
โ€ข SEMI-STREAMING ARRIVAL
๏‚ด O(n) decisions postponed
๏‚ด Vertex Arrival or Edge Arrival
โ€ข TWO-STAGE STOCHASTIC OPTIMIZATION
๏‚ด Costs change every stage
๏‚ด Arrival from a known distribution
6
OUTLINE
โ€ข MULTI-STAGE MATCHING
โ€ข EXAMPLES & SPECIAL CASES
โ€ข PROOF IDEA: FRACTIONAL BIPARTITE MATCHING
โ€ข PROOF IDEA: INTEGRAL BIPARTITE MATCHING
โ€ข EXTENSIONS
AND
OPEN PROBLEMS
7
RANDOMLY PICK MAX MATCHING?
โ€ข FIND A MAX MATCHING
IN
๐† (๐Ÿ)
โ€ข PICK IT RANDOMLY, AND NOTHING OTHERWISE
โ€ข WHAT IF MULTIPLE MAX MATCHINGS?
๐† (๐Ÿ)
๐† (๐Ÿ)
๏‚ด Which one to pick?
๏‚ด With how much probability?
โ€ข GRAPHS KNOWN WHERE FOR EVERY MAX MATCHING ๐Œ,
RANDOMLY PICKING ๐Œ GIVES < ๐Ÿ ๐Ÿ‘
8
๐† (๐Ÿ) HAS A PERFECT MATCHING
โ€ข SUPPOSE ๐† (๐Ÿ)
HAS A
PERFECT MATCHING M
๏‚ด Every vertex with an incident
edge in ๐† (๐Ÿ) is matched in M
โ€ข PICK M w.p. ๐Ÿ ๐Ÿ‘, AND NOTHING OTHERWISE
โ€ข OPTIMALLY AUGMENT IN STAGE 2
LEMMA:
ABOVE ALGORITHM IS ๐Ÿ ๐Ÿ‘ COMPETITIVE
STAGE INTEGRAL BIPARTITE MATCHING.
โ€ข HOW TO PROVE ?
FOR TWO-
9
PRIMAL-DUAL FRAMEWORK
โ€ข OFFLINE BIPARTITE MATCHING LP
๐‘ฅ๐‘ข๐‘ฃ
max
min
๐‘ข,๐‘ฃ โˆˆ๐ธ
s.t.
s.t.
๐‘ฅ๐‘ข๐‘ฃ โ‰ค 1
โˆ€๐‘ข โˆˆ๐‘‰
โˆ€ ๐‘ข, ๐‘ฃ โˆˆ ๐ธ
๐‘ฆ๐‘ข
๐‘ขโˆˆ๐‘‰
๐‘ฆ๐‘ข + ๐‘ฆ๐‘ฃ โ‰ฅ 1
๐‘ฃโˆˆ๐‘›๐‘๐‘Ÿ(๐‘ข)
โˆ€ ๐‘ข, ๐‘ฃ โˆˆ ๐ธ
โˆ€๐‘ข โˆˆ๐‘‰
๐‘ฅ๐‘ข๐‘ฃ โ‰ฅ 0
โ€ข OPT SOLUTION CERTIFICATE FOR ๐’™
๏‚ด Show feasible ๐’š
s.t.
โˆ‘๐‘ฅ๐‘ข๐‘ฃ = โˆ‘๐‘ฆ๐‘ข
โ€ข ๐›ผ-APPROX SOLUTION CERTIFICATE FOR ๐’™
๏‚ด Show ๐œถ-feasible ๐’š s.t.
i.e., ๐‘ฆ๐‘ข + ๐‘ฆ๐‘ฃ โ‰ฅ ๐›ผ
โˆ‘๐‘ฅ๐‘ข๐‘ฃ = โˆ‘๐‘ฆ๐‘ข
๐‘ฆ๐‘ข โ‰ฅ 0
10
๐† (๐Ÿ) HAS A PERFECT MATCHING
โ€ข ALGORITHM
๏‚ด Pick M w.p. 2 3, & Optimally Augment in Stage 2
LEMMA: ABOVE ALGORITHM IS ๐Ÿ
๐Ÿ‘ COMPETITIVE.
(1)
๏‚ด Set ๐‘‹๐‘ข๐‘ฃ = 1 when (๐‘ข, ๐‘ฃ) is picked in Stage 1
(2)
๏‚ด Set ๐‘‹๐‘ข๐‘ฃ = 1 when (๐‘ข, ๐‘ฃ) is picked in Stage 2
1
2
๏‚ด Set ๐‘ฅ๐‘ข๐‘ฃ โ‰œ ๐ธ ๐‘‹๐‘ข๐‘ฃ + ๐ธ ๐‘‹๐‘ข๐‘ฃ
โ€ข CERTIFICATE: ๐’š s.t. โˆ‘๐‘ฅ๐‘ข๐‘ฃ = โˆ‘๐‘ฆ๐‘ข & ๐‘ฆ๐‘ข + ๐‘ฆ๐‘ฃ โ‰ฅ 2
(1)
๏‚ด Set ๐‘Œ๐‘ข
(๐Ÿ)
๏‚ด Set ๐‘Œ๐’–
=1
2
3
when ๐‘ข matched in Stage 1
to be optimal vertex cover for Stage 2, where
(2)
(2)
โˆ‘๐‘‹๐‘ข๐‘ฃ = โˆ‘๐‘Œ๐‘ข
๏‚ด Set ๐‘ฆ๐‘ข โ‰œ ๐ธ ๐‘Œ๐‘ข
1
+ ๐ธ ๐‘Œ๐‘ข
2
11
๐† (๐Ÿ) HAS A PERFECT MATCHING
โ€ข ANALYSIS
๏‚ด โˆ‘๐’™๐’–๐’— = โˆ‘๐’š๐’– : Since
1
(2)
(1)
โˆ‘๐‘‹๐‘ข๐‘ฃ + โˆ‘๐‘‹๐‘ข๐‘ฃ = โˆ‘๐‘Œ๐‘ข
๏‚ด
๐Ÿ
(2)
+ โˆ‘๐‘Œ๐‘ข
๐Ÿ‘-FEASIBILITY: Case
analysis โˆ€ ๐‘ข, ๐‘ฃ โˆˆ ๐„, ๐‘ฆ๐‘ข + ๐‘ฆ๐‘ฃ โ‰ฅ 2
2
3
1
1
1. Both in ๐† (๐Ÿ) :
๐ธ ๐‘Œ๐‘ข
1
+ ๐ธ ๐‘Œ๐‘ฃ
1
โ‰ฅ 3 โˆ— (2 + 2)
2. Both not in ๐† (๐Ÿ) :
๐ธ ๐‘Œ๐‘ข
2
+ ๐ธ ๐‘Œ๐‘ฃ
2
โ‰ฅ1
3. Only ๐‘ข in ๐† (๐Ÿ) :
๐ธ ๐‘Œ๐‘ข
1
+ ๐ธ ๐‘Œ๐‘ข
2
+ ๐‘Œ๐‘ฃ
2
2
3
1
2
1
3
โ‰ฅ โˆ— + โˆ—1
Q.E.D.
12
OUTLINE
โ€ข MULTI-STAGE MATCHING
โ€ข EXAMPLES & SPECIAL CASES
โ€ข PROOF IDEA: FRACTIONAL BIPARTITE MATCHING
โ€ข PROOF IDEA: INTEGRAL BIPARTITE MATCHING
โ€ข EXTENSIONS
AND
OPEN PROBLEMS
13
TWO-STAGE FRACTIONAL MATCHING
THEOREM 2:
FOR TWO-STAGE FRACTIONAL BIPARTITE MATCHING, THERE EXISTS
AN INSTANCE OPTIMAL COMPETITIVE ALGORITHM.
PROOF IDEA:
โ€ข CONSTRUCT
AN
LP ON ๐† (๐Ÿ)
THAT MAXIMIZES
๐›ผ
โ€ข GETS ๐›ผ โ‹… ๐‘ถ๐‘ท๐‘ป FOR EVERY ๐† (๐Ÿ)
โ€ข FOR EVERY ALG, โˆƒ๐† (๐Ÿ)
WHERE
ALG โ‰ค ๐›ผ โ‹… ๐‘ถ๐‘ท๐‘ป
Here ๐‘ถ๐‘ท๐‘ป โ‰œ OPT(๐† (๐Ÿ) , ๐† (๐Ÿ))
14
A NEW LP
max
๐›ผ
INSTANCE OPTIMALITY:
s.t.
๐‘“๐‘ข โ‰ค 1
โˆ€๐‘ข โˆˆ๐‘‰
โˆ€ ๐‘ข, ๐‘ฃ โˆˆ ๐ธ
โ€ข Gets ๐›ผ โ‹… ๐‘ถ๐‘ท๐‘ป for every ๐† (๐Ÿ)
โ€ข For every ALG, โˆƒ๐† (๐Ÿ) where
ALG โ‰ค ๐›ผ โ‹… ๐‘ถ๐‘ท๐‘ป
๐‘ฆ๐‘ข + ๐‘ฆ๐‘ฃ โ‰ฅ ๐›ผ
Let ๐‘“๐‘ข โ‰œ
๐‘ฃโˆˆ๐‘›๐‘๐‘Ÿ(๐‘ข)
๐‘ฅ๐‘ข๐‘ฃ , ๐‘ฆ๐‘ข โ‰ฅ 0
๐‘ฅ๐‘ข๐‘ฃ =
โ‰ค 1 โˆ’ ๐‘“๐‘ข
๐‘ข,๐‘ฃ โˆˆ๐ธ
โˆ€๐‘ข โˆˆ๐‘‰
๐‘ฅ๐‘ข๐‘ฃ
๐‘ฆ๐‘ข
๐‘ขโˆˆ๐‘‰
๐‘ฆ๐‘ข โ‰ฅ ๐‘“๐‘ข โˆ’ (1 โˆ’ ๐›ผ)
QUES: Is ๐›ผ โ‰ฅ ๐Ÿ ๐Ÿ‘?
15
OUTLINE
โ€ข MULTI-STAGE MATCHING
โ€ข EXAMPLES & SPECIAL CASES
โ€ข PROOF IDEA: FRACTIONAL BIPARTITE MATCHING
โ€ข PROOF IDEA: INTEGRAL BIPARTITE MATCHING
โ€ข EXTENSIONS
AND
OPEN PROBLEMS
16
๐† (๐Ÿ) IS ๐œถ EXPANDING
Here ๐œถ โ‰ค ๐Ÿ
โ€ข SUPPOSE ๐† (๐Ÿ)
IS
๐œถ EXPANDING
๏‚ด Every S โ€ฒ โІ ๐‘† has ๐‘†โ€ฒ /๐›ผ neighbors
๐‘†
๏‚ด Can pick a random matching ๐Œ
s.t. โˆ€u โˆˆ ๐‘† & โˆ€๐‘ฃ โˆˆ ๐‘‡ we have
๐‘ƒ๐‘Ÿ ๐‘ข โˆˆ ๐Œ = 1 & ๐‘ƒ๐‘Ÿ ๐‘ฃ โˆˆ ๐Œ = ๐›ผ
๐‘‡
โ€ข ALGORITHM
๏‚ด Pick M w.p. 1 โˆ’ ๐›ผ 3, & Optimally Augment in Stage 2
โ€ข ANALYSIS
๏‚ด Set ๐‘Œ๐‘ข
1
= 1 โˆ’ ๐œ– & ๐‘Œ๐‘ฃ
1
2โˆ’๐›ผ
= ๐œ– for ๐œ– = 3โˆ’๐›ผ when (๐‘ข, ๐‘ฃ) picked
๏‚ด For any ๐† (๐Ÿ) case-by-case show for every edge (๐‘ข, ๐‘ฃ)
๐‘ฆ๐‘ข + ๐‘ฆ๐‘ฃ โ‰ฅ 2 3
TWO-STAGE INTEGRAL MATCHING
17
THEOREM 1:
FOR TWO-STAGE INTEGRAL BIPARTITE MATCHING, THERE EXISTS A
๐Ÿ
๐Ÿ‘ COMPETITIVE TIGHT ALGORITHM.
ALGORITHM:
1.
CONSTRUCT A MATCHING SKELETON OF ๐‘ฎ(๐Ÿ)
๏‚ด Partition into several ๐œถ Expanding Bipartite Subgraphs
2.
3.
RANDOMLY PICK A MAX MATCHING IN EACH BIPARTITE SUBGRAPH
OPTIMALLY AUGMENT IN STAGE 2
PROOF: SHOW โˆƒ๐’š S.T.
โ€ข โˆ‘๐‘ฅ๐‘ข๐‘ฃ = โˆ‘๐‘ฆ๐‘ข where ๐‘ฅ๐‘ข๐‘ฃ = ๐ธ[๐‘‹๐‘ข๐‘ฃ ]
โ€ข ๐‘ฆ๐‘ข + ๐‘ฆ๐‘ฃ โ‰ฅ 2 3 for every edge (๐‘ข, ๐‘ฃ)
BIPARTITE MATCHING SKELETON
18
GOEL-KAPRALOV-KHANNA
โ€ข
โ€ข
Decompose ๐† (๐Ÿ) into (๐‘†๐‘— , ๐‘‡๐‘— )
๐‘†๐‘— , ๐‘‡๐‘— is ๐œถ๐’‹ expanding, where ๐›ผ๐‘— โ‰ค 1
โ€ข
No edge ๐‘‡๐‘— to ๐‘‡๐‘˜
โ€ข
No edge ๐‘†๐‘— to ๐‘‡๐‘˜ for ๐›ผ๐‘— > ๐›ผ๐‘˜
ALGORITHM
โ€ข
Select ๐‘Ÿ uniformly [0,1]
โ€ข
โˆ€๐‘— pick ๐Œ๐’‹ if ๐‘Ÿ < 1 โˆ’
๐›ผ๐‘—
= 1 โˆ’ ๐œ–๐‘— & ๐‘Œ๐‘ฃ
1
๐‘‡2
๐‘†2
๐‘‡1
๐‘†1
๐‘‡0
๐‘†0
๐‘†โˆ’1
๐‘‡โˆ’1
๐‘†โˆ’2
๐‘‡โˆ’2
3
ANALYSIS
1
ALGORITHM :
1. Construct a Matching Skeleton of ๐‘ฎ(๐Ÿ)
2. Randomly pick a Max Matching in
each bipartite subgraph
3. Optimally augment in Stage 2
= ๐œ–๐‘— for ๐œ–๐‘— =
2โˆ’๐›ผ๐‘—
โ€ข
Set ๐‘Œ๐‘ข
โ€ข
For any ๐† (๐Ÿ) show for every edge (๐‘ข, ๐‘ฃ)
๐‘ฆ๐‘ข + ๐‘ฆ๐‘ฃ โ‰ฅ 2 3
3โˆ’๐›ผ๐‘—
๐›ผ0 = 1
19
OUTLINE
โ€ข MULTI-STAGE MATCHING
โ€ข EXAMPLES & SPECIAL CASES
โ€ข PROOF IDEA: FRACTIONAL BIPARTITE MATCHING
โ€ข PROOF IDEA: INTEGRAL BIPARTITE MATCHING
โ€ข EXTENSIONS
AND
OPEN PROBLEMS
EXTENSIONS
20
THEOREM 3:
FOR TWO-STAGE FRACTIONAL GENERAL MATCHING, THERE EXISTS
A ๐Ÿ‘ ๐Ÿ“ COMPETITIVE ALGORITHM.
THEOREM 4:
FOR S-STAGE INTEGRAL GENERAL MATCHING, THERE EXISTS A
๐Ÿ
๐Ÿ๐‘ถ(๐ฌ)
COMPETITIVE ALGORITHM.
๐Ÿ
๐Ÿ
+
21
GENERAL MATCHING SKELETON
EDMONDS-GALLAI DECOMPOSITION
PROOF IDEA:
๐’๐’ƒ๐’“โ€ฒ(๐‘จ) has โ‰ค 1
vertex from each
odd component
โ€ข
Run Bipartite Algo for ๐‘จ โˆช ๐‘ช โˆช ๐’๐’ƒ๐’“โ€ฒ(๐‘จ)
โ€ข
Pick Matching in ๐‘ซ synchronously with ๐’๐’ƒ๐’“โ€ฒ ๐‘จ
โ€ข
Distribute duals to vertices & odd-components
โ€ข
Show for any ๐‘ฎ(๐Ÿ) : ๐‘ฆ๐‘ข + ๐‘ฆ๐‘ฃ โ‰ฅ 3
5
for every ๐‘ข, ๐‘ฃ โˆˆ ๐ธ
22
OPEN PROBLEMS
PROBLEM 1:
FOR S-STAGE INTEGRAL BIPARTITE MATCHING, DOES THERE EXIST
AN ALGORITHM THAT BEATS HALF BY A CONSTANT?
PROBLEM 2:
FOR TWO-STAGE INTEGRAL GENERAL MATCHING, WHAT IS THE
TIGHT COMPETITIVE RATIO?
We showed itโ€™s > 1
2
and < 2
3
23
OPEN PROBLEMS
PROBLEM 3:
ANY NATURAL ONLINE PROBLEM WITH ๐จ(๐ฌ) COMPETITIVE
ALGORITHM IN S-STAGE ONLINE-BATCH ARRIVAL MODEL?
โ€ข NOT TRUE FOR
๏‚ด Online Set Cover
๏‚ด Online Facility Location
๏‚ด Online Steiner Tree
๏‚ด Unrelated Load Balancing (makespan minimization)
SUMMARY
24
โ€ข
FRACTIONAL BIPARTITE MATCHING
๏‚ด Instance optimal for two stages
โ€ข
INTEGRAL BIPARTITE MATCHING
๏‚ด
โ€ข
3
competitive for two-stages
INTEGRAL GENERAL MATCHING
๏‚ด
โ€ข
2
1
1
+
2
2๐‘‚(s)
competitive for s-stage s
OPEN PROBLEMS
๏‚ด Beat half for linear # stages?
QUESTIONS?
๏‚ด Other interesting multistage problems?
25
REFERENCES
โ€ข
L. Epstein, A. Levin, D. Segev, and O. Weimann. Improved bounds for online
preemptive matching. STACSโ€™13
โ€ข
A. Goel, M. Kapralov, and S. Khanna. `On the communication and streaming
complexity of maximum bipartite matchingโ€™. SODAโ€™12
โ€ข
D. Golovin, V. Goyal, V. Polishchuk, R. Ravi, and M. Sysikaski. `Improved
approximations for two-stage min-cut and shortest path problems under
uncertaintyโ€™. MATH PROGโ€™15
โ€ข
R. M. Karp, U. V. Vazirani, and V. V. Vazirani. `An optimal algorithm for on-line
bipartite matchingโ€™. STOCโ€™90
โ€ข
L. Lovasz and M. D. Plummer. `Matching Theoryโ€™. ANN DISC MATHโ€™86
โ€ข
A. Mehta. `Online matching and ad allocationโ€™. TCSโ€™12.
โ€ข
C. Swamy and D. B. Shmoys. `Approximation algorithms for 2-stage stochastic
optimization problemsโ€™. SIGACTโ€™06