Maximum Matching in the Online Batch-Arrival Model 26th June, 2017 SAHIL SINGLA (CARNEGIE MELLON UNIVERSITY) JOINT WORK WITH EUIWOONG LEE 2 TWO-STAGE MATCHING PROBLEM โข GRAPH EDGES APPEARS IN TWO BATCHES/ STAGES ๏ด ๐ = ๐ (๐) โช ๐ (๐) โข ๐ (๐) APPEARS IN STAGE 1 ๏ด Pick Matching ๐ (๐) in ๐ (๐) (Unknown ๐ (๐) ) ๏ด Unselected Edges Disappear โข ๐ (๐) APPEARS IN STAGE 2 ๏ด Select ๐ (๐) in ๐ (๐) s.t. ๐ (๐) โช ๐ (๐) is a Matching โข GOAL ๏ด Maximize size of ๐ (๐) โช ๐ (๐) ๏ด Competitive Ratio: โข GREEDY IS HALF COMPETITIVE ๐[๐๐๐(๐ (๐) , ๐ (๐) )] ๐๐๐(๐ (๐) , ๐ (๐) ) CAN WE BEAT HALF? THE Z GRAPH 3 โข GRAPH APPEARS IN TWO BATCHES ๏ด โข ๐ (๐) โข ๐ (๐) APPEARS ๏ด Pick Matching ๐ (๐) in ๐ (๐) (Unknown ๐ (๐) ) ๏ด Unselected Edges Disappear ๐ (๐) APPEARS ๏ด โข ๐ (๐) Select ๐ (๐) in ๐ (๐) s.t. ๐ (๐) โช ๐ (๐) is a Matching GOAL ๏ด ๐ (๐) ๐ = ๐ (๐) โช ๐ (๐) Maximize size of ๐ (๐) โช ๐ (๐) โข DO WE PICK EDGE IN ๐ (๐) ? ๏ด Pick w.p. 2 Case 1: E[Alg]= 2 or 3 3 & OPT=1 Case 2: E[Alg]= 2 3 + 1 3 โ 2 & OPT=2 โข FRACTIONAL MATCHING? Case 1 Case 2 ๏ด Easier than Integral 4 OUR RESULTS THEOREM 1: FOR TWO-STAGE INTEGRAL BIPARTITE MATCHING, THERE EXISTS A ๐ ๐ COMPETITIVE TIGHT ALGORITHM. THEOREM 2: FOR TWO-STAGE FRACTIONAL BIPARTITE MATCHING, THERE EXISTS AN INSTANCE OPTIMAL COMPETITIVE ALGORITHM. INSTANCE OPTIMAL: Given ๐ (๐) returns ๐ผ s.t. โข Gets ๐ผ โ ๐ถ๐ท๐ป for every ๐ (๐) โข For every Alg, โ๐ (๐) where ALG โค ๐ผ โ ๐ถ๐ท๐ป 5 PRIOR WORK โข ONLINE ARRIVAL ๏ด Single arrival in each step (linear # stages) ๏ด Immediate & Irrevocable decisions ๏ด Vertex Arrival or Edge Arrival โข SEMI-STREAMING ARRIVAL ๏ด O(n) decisions postponed ๏ด Vertex Arrival or Edge Arrival โข TWO-STAGE STOCHASTIC OPTIMIZATION ๏ด Costs change every stage ๏ด Arrival from a known distribution 6 OUTLINE โข MULTI-STAGE MATCHING โข EXAMPLES & SPECIAL CASES โข PROOF IDEA: FRACTIONAL BIPARTITE MATCHING โข PROOF IDEA: INTEGRAL BIPARTITE MATCHING โข EXTENSIONS AND OPEN PROBLEMS 7 RANDOMLY PICK MAX MATCHING? โข FIND A MAX MATCHING IN ๐ (๐) โข PICK IT RANDOMLY, AND NOTHING OTHERWISE โข WHAT IF MULTIPLE MAX MATCHINGS? ๐ (๐) ๐ (๐) ๏ด Which one to pick? ๏ด With how much probability? โข GRAPHS KNOWN WHERE FOR EVERY MAX MATCHING ๐, RANDOMLY PICKING ๐ GIVES < ๐ ๐ 8 ๐ (๐) HAS A PERFECT MATCHING โข SUPPOSE ๐ (๐) HAS A PERFECT MATCHING M ๏ด Every vertex with an incident edge in ๐ (๐) is matched in M โข PICK M w.p. ๐ ๐, AND NOTHING OTHERWISE โข OPTIMALLY AUGMENT IN STAGE 2 LEMMA: ABOVE ALGORITHM IS ๐ ๐ COMPETITIVE STAGE INTEGRAL BIPARTITE MATCHING. โข HOW TO PROVE ? FOR TWO- 9 PRIMAL-DUAL FRAMEWORK โข OFFLINE BIPARTITE MATCHING LP ๐ฅ๐ข๐ฃ max min ๐ข,๐ฃ โ๐ธ s.t. s.t. ๐ฅ๐ข๐ฃ โค 1 โ๐ข โ๐ โ ๐ข, ๐ฃ โ ๐ธ ๐ฆ๐ข ๐ขโ๐ ๐ฆ๐ข + ๐ฆ๐ฃ โฅ 1 ๐ฃโ๐๐๐(๐ข) โ ๐ข, ๐ฃ โ ๐ธ โ๐ข โ๐ ๐ฅ๐ข๐ฃ โฅ 0 โข OPT SOLUTION CERTIFICATE FOR ๐ ๏ด Show feasible ๐ s.t. โ๐ฅ๐ข๐ฃ = โ๐ฆ๐ข โข ๐ผ-APPROX SOLUTION CERTIFICATE FOR ๐ ๏ด Show ๐ถ-feasible ๐ s.t. i.e., ๐ฆ๐ข + ๐ฆ๐ฃ โฅ ๐ผ โ๐ฅ๐ข๐ฃ = โ๐ฆ๐ข ๐ฆ๐ข โฅ 0 10 ๐ (๐) HAS A PERFECT MATCHING โข ALGORITHM ๏ด Pick M w.p. 2 3, & Optimally Augment in Stage 2 LEMMA: ABOVE ALGORITHM IS ๐ ๐ COMPETITIVE. (1) ๏ด Set ๐๐ข๐ฃ = 1 when (๐ข, ๐ฃ) is picked in Stage 1 (2) ๏ด Set ๐๐ข๐ฃ = 1 when (๐ข, ๐ฃ) is picked in Stage 2 1 2 ๏ด Set ๐ฅ๐ข๐ฃ โ ๐ธ ๐๐ข๐ฃ + ๐ธ ๐๐ข๐ฃ โข CERTIFICATE: ๐ s.t. โ๐ฅ๐ข๐ฃ = โ๐ฆ๐ข & ๐ฆ๐ข + ๐ฆ๐ฃ โฅ 2 (1) ๏ด Set ๐๐ข (๐) ๏ด Set ๐๐ =1 2 3 when ๐ข matched in Stage 1 to be optimal vertex cover for Stage 2, where (2) (2) โ๐๐ข๐ฃ = โ๐๐ข ๏ด Set ๐ฆ๐ข โ ๐ธ ๐๐ข 1 + ๐ธ ๐๐ข 2 11 ๐ (๐) HAS A PERFECT MATCHING โข ANALYSIS ๏ด โ๐๐๐ = โ๐๐ : Since 1 (2) (1) โ๐๐ข๐ฃ + โ๐๐ข๐ฃ = โ๐๐ข ๏ด ๐ (2) + โ๐๐ข ๐-FEASIBILITY: Case analysis โ ๐ข, ๐ฃ โ ๐, ๐ฆ๐ข + ๐ฆ๐ฃ โฅ 2 2 3 1 1 1. Both in ๐ (๐) : ๐ธ ๐๐ข 1 + ๐ธ ๐๐ฃ 1 โฅ 3 โ (2 + 2) 2. Both not in ๐ (๐) : ๐ธ ๐๐ข 2 + ๐ธ ๐๐ฃ 2 โฅ1 3. Only ๐ข in ๐ (๐) : ๐ธ ๐๐ข 1 + ๐ธ ๐๐ข 2 + ๐๐ฃ 2 2 3 1 2 1 3 โฅ โ + โ1 Q.E.D. 12 OUTLINE โข MULTI-STAGE MATCHING โข EXAMPLES & SPECIAL CASES โข PROOF IDEA: FRACTIONAL BIPARTITE MATCHING โข PROOF IDEA: INTEGRAL BIPARTITE MATCHING โข EXTENSIONS AND OPEN PROBLEMS 13 TWO-STAGE FRACTIONAL MATCHING THEOREM 2: FOR TWO-STAGE FRACTIONAL BIPARTITE MATCHING, THERE EXISTS AN INSTANCE OPTIMAL COMPETITIVE ALGORITHM. PROOF IDEA: โข CONSTRUCT AN LP ON ๐ (๐) THAT MAXIMIZES ๐ผ โข GETS ๐ผ โ ๐ถ๐ท๐ป FOR EVERY ๐ (๐) โข FOR EVERY ALG, โ๐ (๐) WHERE ALG โค ๐ผ โ ๐ถ๐ท๐ป Here ๐ถ๐ท๐ป โ OPT(๐ (๐) , ๐ (๐)) 14 A NEW LP max ๐ผ INSTANCE OPTIMALITY: s.t. ๐๐ข โค 1 โ๐ข โ๐ โ ๐ข, ๐ฃ โ ๐ธ โข Gets ๐ผ โ ๐ถ๐ท๐ป for every ๐ (๐) โข For every ALG, โ๐ (๐) where ALG โค ๐ผ โ ๐ถ๐ท๐ป ๐ฆ๐ข + ๐ฆ๐ฃ โฅ ๐ผ Let ๐๐ข โ ๐ฃโ๐๐๐(๐ข) ๐ฅ๐ข๐ฃ , ๐ฆ๐ข โฅ 0 ๐ฅ๐ข๐ฃ = โค 1 โ ๐๐ข ๐ข,๐ฃ โ๐ธ โ๐ข โ๐ ๐ฅ๐ข๐ฃ ๐ฆ๐ข ๐ขโ๐ ๐ฆ๐ข โฅ ๐๐ข โ (1 โ ๐ผ) QUES: Is ๐ผ โฅ ๐ ๐? 15 OUTLINE โข MULTI-STAGE MATCHING โข EXAMPLES & SPECIAL CASES โข PROOF IDEA: FRACTIONAL BIPARTITE MATCHING โข PROOF IDEA: INTEGRAL BIPARTITE MATCHING โข EXTENSIONS AND OPEN PROBLEMS 16 ๐ (๐) IS ๐ถ EXPANDING Here ๐ถ โค ๐ โข SUPPOSE ๐ (๐) IS ๐ถ EXPANDING ๏ด Every S โฒ โ ๐ has ๐โฒ /๐ผ neighbors ๐ ๏ด Can pick a random matching ๐ s.t. โu โ ๐ & โ๐ฃ โ ๐ we have ๐๐ ๐ข โ ๐ = 1 & ๐๐ ๐ฃ โ ๐ = ๐ผ ๐ โข ALGORITHM ๏ด Pick M w.p. 1 โ ๐ผ 3, & Optimally Augment in Stage 2 โข ANALYSIS ๏ด Set ๐๐ข 1 = 1 โ ๐ & ๐๐ฃ 1 2โ๐ผ = ๐ for ๐ = 3โ๐ผ when (๐ข, ๐ฃ) picked ๏ด For any ๐ (๐) case-by-case show for every edge (๐ข, ๐ฃ) ๐ฆ๐ข + ๐ฆ๐ฃ โฅ 2 3 TWO-STAGE INTEGRAL MATCHING 17 THEOREM 1: FOR TWO-STAGE INTEGRAL BIPARTITE MATCHING, THERE EXISTS A ๐ ๐ COMPETITIVE TIGHT ALGORITHM. ALGORITHM: 1. CONSTRUCT A MATCHING SKELETON OF ๐ฎ(๐) ๏ด Partition into several ๐ถ Expanding Bipartite Subgraphs 2. 3. RANDOMLY PICK A MAX MATCHING IN EACH BIPARTITE SUBGRAPH OPTIMALLY AUGMENT IN STAGE 2 PROOF: SHOW โ๐ S.T. โข โ๐ฅ๐ข๐ฃ = โ๐ฆ๐ข where ๐ฅ๐ข๐ฃ = ๐ธ[๐๐ข๐ฃ ] โข ๐ฆ๐ข + ๐ฆ๐ฃ โฅ 2 3 for every edge (๐ข, ๐ฃ) BIPARTITE MATCHING SKELETON 18 GOEL-KAPRALOV-KHANNA โข โข Decompose ๐ (๐) into (๐๐ , ๐๐ ) ๐๐ , ๐๐ is ๐ถ๐ expanding, where ๐ผ๐ โค 1 โข No edge ๐๐ to ๐๐ โข No edge ๐๐ to ๐๐ for ๐ผ๐ > ๐ผ๐ ALGORITHM โข Select ๐ uniformly [0,1] โข โ๐ pick ๐๐ if ๐ < 1 โ ๐ผ๐ = 1 โ ๐๐ & ๐๐ฃ 1 ๐2 ๐2 ๐1 ๐1 ๐0 ๐0 ๐โ1 ๐โ1 ๐โ2 ๐โ2 3 ANALYSIS 1 ALGORITHM : 1. Construct a Matching Skeleton of ๐ฎ(๐) 2. Randomly pick a Max Matching in each bipartite subgraph 3. Optimally augment in Stage 2 = ๐๐ for ๐๐ = 2โ๐ผ๐ โข Set ๐๐ข โข For any ๐ (๐) show for every edge (๐ข, ๐ฃ) ๐ฆ๐ข + ๐ฆ๐ฃ โฅ 2 3 3โ๐ผ๐ ๐ผ0 = 1 19 OUTLINE โข MULTI-STAGE MATCHING โข EXAMPLES & SPECIAL CASES โข PROOF IDEA: FRACTIONAL BIPARTITE MATCHING โข PROOF IDEA: INTEGRAL BIPARTITE MATCHING โข EXTENSIONS AND OPEN PROBLEMS EXTENSIONS 20 THEOREM 3: FOR TWO-STAGE FRACTIONAL GENERAL MATCHING, THERE EXISTS A ๐ ๐ COMPETITIVE ALGORITHM. THEOREM 4: FOR S-STAGE INTEGRAL GENERAL MATCHING, THERE EXISTS A ๐ ๐๐ถ(๐ฌ) COMPETITIVE ALGORITHM. ๐ ๐ + 21 GENERAL MATCHING SKELETON EDMONDS-GALLAI DECOMPOSITION PROOF IDEA: ๐๐๐โฒ(๐จ) has โค 1 vertex from each odd component โข Run Bipartite Algo for ๐จ โช ๐ช โช ๐๐๐โฒ(๐จ) โข Pick Matching in ๐ซ synchronously with ๐๐๐โฒ ๐จ โข Distribute duals to vertices & odd-components โข Show for any ๐ฎ(๐) : ๐ฆ๐ข + ๐ฆ๐ฃ โฅ 3 5 for every ๐ข, ๐ฃ โ ๐ธ 22 OPEN PROBLEMS PROBLEM 1: FOR S-STAGE INTEGRAL BIPARTITE MATCHING, DOES THERE EXIST AN ALGORITHM THAT BEATS HALF BY A CONSTANT? PROBLEM 2: FOR TWO-STAGE INTEGRAL GENERAL MATCHING, WHAT IS THE TIGHT COMPETITIVE RATIO? We showed itโs > 1 2 and < 2 3 23 OPEN PROBLEMS PROBLEM 3: ANY NATURAL ONLINE PROBLEM WITH ๐จ(๐ฌ) COMPETITIVE ALGORITHM IN S-STAGE ONLINE-BATCH ARRIVAL MODEL? โข NOT TRUE FOR ๏ด Online Set Cover ๏ด Online Facility Location ๏ด Online Steiner Tree ๏ด Unrelated Load Balancing (makespan minimization) SUMMARY 24 โข FRACTIONAL BIPARTITE MATCHING ๏ด Instance optimal for two stages โข INTEGRAL BIPARTITE MATCHING ๏ด โข 3 competitive for two-stages INTEGRAL GENERAL MATCHING ๏ด โข 2 1 1 + 2 2๐(s) competitive for s-stage s OPEN PROBLEMS ๏ด Beat half for linear # stages? QUESTIONS? ๏ด Other interesting multistage problems? 25 REFERENCES โข L. Epstein, A. Levin, D. Segev, and O. Weimann. Improved bounds for online preemptive matching. STACSโ13 โข A. Goel, M. Kapralov, and S. Khanna. `On the communication and streaming complexity of maximum bipartite matchingโ. SODAโ12 โข D. Golovin, V. Goyal, V. Polishchuk, R. Ravi, and M. Sysikaski. `Improved approximations for two-stage min-cut and shortest path problems under uncertaintyโ. MATH PROGโ15 โข R. M. Karp, U. V. Vazirani, and V. V. Vazirani. `An optimal algorithm for on-line bipartite matchingโ. STOCโ90 โข L. Lovasz and M. D. Plummer. `Matching Theoryโ. ANN DISC MATHโ86 โข A. Mehta. `Online matching and ad allocationโ. TCSโ12. โข C. Swamy and D. B. Shmoys. `Approximation algorithms for 2-stage stochastic optimization problemsโ. SIGACTโ06
© Copyright 2026 Paperzz