Aref Jeribi Spectral Theory and Applications of Linear Operators and Block Operator Matrices Spectral Theory and Applications of Linear Operators and Block Operator Matrices Aref Jeribi Spectral Theory and Applications of Linear Operators and Block Operator Matrices 123 Aref Jeribi Department of Mathematics University of Sfax Sfax, Tunisia ISBN 978-3-319-17565-2 ISBN 978-3-319-17566-9 (eBook) DOI 10.1007/978-3-319-17566-9 Library of Congress Control Number: 2015102923 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www. springer.com) To my mother Sania, my father Ali, my wife Fadoua, my children Adam and Rahma, my brothers Sofien and Mohamed Amin, my sister Elhem, my mother-in-law Zineb, my father-in-law Ridha, and all members of my extended family Preface Several books have been devoted to the spectral theory and its applications. However, this volume is very special as compared with the previous ones. For example, the perturbation approach has been, for a long time, extensively studied and considered as one of the most useful methods used in order to study some mathematical and applied problems. The main idea is that, if we know something about the solution for an easier problem, lying “close” to the one we are studying, then we can say something about our problem, provided that the difference or the perturbation is sufficiently weak. In view of more advanced applications, especially the ones dealing with complicated evolutional problems in Physics, Chemistry, Technology, Biology, etc., where the natural setting doesn’t involve single operators but operator matrices and polynomial operator pencils, the concept of compact perturbations is very often used, and it was shown that they were not sufficient for handling such problems. The main advantage of this book is the detailed description of the ways showing how the compactness condition can be relaxed, in a very general Banach space setting, so that the previously impossible problems become suddenly solvable. The method of extending results is not unique. That is why we have to devote a lot of space in order to describe the different extensions of the classical notions, and to demonstrate how they specifically work in different applications. More precisely, it is well known that the essential spectrum of an operator A consists of those points of the spectrum which cannot be removed from the spectrum by the addition to A of a compact operator. The most powerful result obtained in my thesis is that, in L1 -spaces, the essential spectrum of an operator A is nothing else but the largest subset of the spectrum of A which remains invariant under weakly compact perturbations of A. This unexpected result has opened many prospects to develop innovative ways leading to a rigorous study of the Fredholm theory and in the whole book, we give an account of the recent research on the spectral theory by presenting a wide panorama of techniques including the weak topology, which vii viii Preface contributes to an extra insight to the classical results and enables us to solve concrete problems from transport theory arising in their natural setting (L1 -spaces). The main topics include: • Riesz theory of polynomially compact operators. • Time behavior of solutions for an abstract Cauchy problem on Banach spaces. • Fredholm theory and characterization of essential spectra by means of measure of noncompactness, demicompact operator, measure of weak noncompactness, and graph measures. • S -essential spectra and essential pseudospectra. • Spectral theory of block operator matrices. • Spectral graph theory. • Applications in mathematical physics and biology. We do hope that this book will be very useful for researchers, since it represents not only a collection of a previously heterogeneous material, but also an innovation through several extensions. Of course, it is impossible for a single book to cover such a huge field of research. In making personal choices for inclusion of material, we tried to give useful complementary references in this research area, hence probably neglecting some relevant works. We would be very grateful to receive any comments from readers and researchers, providing us with some information concerning some missing references. We would like to thank Salma Charfi for the improvement she has made in the introduction of this book. So, we are indebted to her. We would like to thank Nedra Moalla for the improvements she has made concerning the spectral mapping theorem. We would also like to thank Aymen Ammar for the improvements he has made throughout this book. So, we are very grateful to him. Concerning the chapter related to graph theory, we were fortunate to have the help of Hatem Baloudi, who assisted in the preparation of this chapter. So, we are indebted to him. We would like to thank Professor Sylvain Golénia for his generous permission to integrate, in this book, the results of Hatem Baloudi dealing with the graph theory. Moreover, we would like to mention that the thesis work results, performed under my direction, by my former students and presently colleagues Nedra Moalla, Afif Ben Amar, Faiçal Abdmouleh, Boulbeba Abdelmoumen, Salma Charfi, Ines Walha, Bilel Krichen, Omar Jedidi, Sonia Yengui, Aymen Ammar, Naouel Ben Ali, Rihab Moalla, Hatem Baloudi, Mohammed Zerai Dhahri, and Bilel Boukettaya, the obtained results have helped us in writing this book. Last but not least, we would like to thank Ridha Damak for improving the English of all chapters of this book. Finally, we apologize in case we have forgotten to quote any author who has contributed, directly or indirectly, to this work. Sfax, Tunisia June 2015 Aref Jeribi Contents 1 2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Spectral Theory and Cauchy Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Time Behavior of Solutions to an Abstract Cauchy Problem on Banach Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Fredholm Theory and Essential Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 S -Essential Spectra and Essential Pseudospectra . . . . . . . . . . . . . . . . . 1.5 Spectral Theory of Block Operator Matrices . . . . . . . . . . . . . . . . . . . . . . 1.6 Spectral Graph Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.7 Applications in Mathematical Physics and Biology. . . . . . . . . . . . . . . 1.8 Outline of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.1 Closed and Closable Operators. . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.2 Adjoint Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.3 Elementary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.4 Fredholm Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.5 Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.6 Relatively Boundedness and Relatively Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.7 Sum of Closed Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.8 Strictly Singular and Strictly Cosingular Operators . . . . 2.1.9 Fredholm and Semi-Fredholm Perturbations . . . . . . . . . . . 2.1.10 Dunford–Pettis Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Basic Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.1 Basics on Bounded Fredholm Operators . . . . . . . . . . . . . . . 2.2.2 Gap Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.3 Semi-Regular and Essentially Semi-Regular Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.4 Basics on Unbounded Fredholm Operators. . . . . . . . . . . . . 1 2 4 8 13 15 16 18 20 23 23 23 24 25 26 28 29 31 32 33 35 36 37 42 44 48 ix x Contents 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 3 2.2.5 Quasi-Inverse Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.6 Basics on Unbounded Browder Operators . . . . . . . . . . . . . . Positive Operator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.1 Positive Operator on Lp -Spaces . . . . . . . . . . . . . . . . . . . . . . . . 2.3.2 Positive Operator on Banach Lattice . . . . . . . . . . . . . . . . . . . . Integral Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.1 Integral Operator on Lp -Spaces. . . . . . . . . . . . . . . . . . . . . . . . . 2.4.2 Integral Operator on L1 -Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.3 Cauchy’s Type Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Semigroup Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.1 Strongly Continuous Semigroup . . . . . . . . . . . . . . . . . . . . . . . . 2.5.2 The Hille-Yosida Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Essential Spectral Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Borel Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Baire Measurable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Banach Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Measure of Noncompactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.10.1 Measure of Noncompactness of a Bounded Subset . . . . 2.10.2 Measure of Noncompactness of an Operator . . . . . . . . . . . Measure of Weak Noncompactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Graph Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.12.1 Graph Measure of Noncompactness . . . . . . . . . . . . . . . . . . . . 2.12.2 Graph Measure of Weak Noncompactness . . . . . . . . . . . . . 2.12.3 Seminorm Related to Upper Semi-Fredholm Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Schur Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Generalities about graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.15.1 Unoriented Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.15.2 Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.15.3 Bipartite Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.15.4 Subgraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fredholm Operators and Riesz Theory for Polynomially Compact Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Riesz Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.1 Some Results on Polynomially Compact Operators . . . 3.1.2 Generalized Riesz Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 First and Second Kind Operator Equation . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Spectral Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Localization of Eigenvalues of Polynomially Compact Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Polynomially Riesz Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 Some Results on Polynomially Fredholm Perturbation . . . . . . . . . . . 51 53 56 56 58 59 59 61 63 65 65 66 68 71 74 76 77 77 80 82 84 86 87 88 89 91 92 92 93 94 98 101 101 101 106 108 110 112 117 118 Contents 4 5 Time-Asymptotic Description of the Solution for an Abstract Cauchy Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 Abstract Cauchy Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.1 Compactness Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.2 The Remainder Term of the Dyson–Philips Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Time Behavior of Solutions for an Abstract Cauchy Problem (4.0.1) on Banach Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Time Behavior of Solutions for an Abstract Cauchy Problem (4.0.1) on Lp -Spaces (1 < p < 1) . . . . . . . . . . . . . . . . . . . . . Fredholm Theory Related to Some Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Fredholm Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Fredholm Theory by Means of Noncompactness Measures . . . . . . 5.3 Fredholm Theory by Means of Non-strict Singularity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 Fredholm Theory by Means of Demicompact Operator . . . . . . . . . . 5.4.1 Demicompactness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.2 S -Demicompactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 Fredholm Theory by Means of Weak Noncompactness Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6 Fredholm Theory with Finite Ascent and Descent . . . . . . . . . . . . . . . . 5.7 Stability of Semi-Browder Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7.1 Convergence to Zero Compactly . . . . . . . . . . . . . . . . . . . . . . . . xi 121 121 122 124 127 136 139 139 145 148 150 150 155 158 164 165 167 6 Perturbation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 Definitions and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Fredholm and Semi-Fredholm Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 Semi-Fredholm Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4 Fredholm Inverse Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5 Fredholm Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.6 Some Perturbation Results for Matrix Operators . . . . . . . . . . . . . . . . . . 6.7 Some Fredholm Theory Results for Matrix Operators . . . . . . . . . . . . 173 173 174 175 181 185 187 191 7 Essential Spectra of Linear Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1 Definitions and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 The Jeribi Essential Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.1 Relationship Between Jeribi and Schechter Essential Spectra on L1 -Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.2 Relationship Between Jeribi and Schechter Essential Spectra on Banach Space Satisfying the Dunford–Pettis Property . . . . . . . . . . . . . . . . . 7.2.3 Other Characterization of the Schechter Essential Spectrum by the Jeribi Essential Spectrum on Lp -Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 193 198 199 199 200 xii Contents 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 Auxiliary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Essential Spectra of the Sum of Two Bounded Linear Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.1 By Means of Fredholm and Semi-Fredholm Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.2 By Means of Fredholm Inverse . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.3 By Means of Demicompact Operators . . . . . . . . . . . . . . . . . . Unbounded Linear Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5.1 Essential Spectra for the Sum of Closed and Bounded Linear Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5.2 Essential Spectra for the Product of Closed and Bounded Linear Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5.3 Invariance of the Essential Spectra. . . . . . . . . . . . . . . . . . . . . . 7.5.4 Characterization of the Rakoc̆ević and Schmoeger Essential Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . Invariance of the Kato Spectrum by Commuting Nilpotent Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Invariance of Schechter’s Essential Spectrum . . . . . . . . . . . . . . . . . . . . . 7.7.1 Characterization of Schechter’s Essential Spectrum . . . 7.7.2 Invariance by Means of Demicompact Operators . . . . . . 7.7.3 Invariance by Means of Noncompactness Measure . . . . 7.7.4 Invariance of the Schechter’s Essential Spectrum in Dunford–Pettis Space. . . . . . . . . . . . . . . . . . . . . . 7.7.5 Invariance Under Perturbation of Polynomially Compact Operators . . . . . . . . . . . . . . . . . . . . . . . 7.7.6 Invariance by Means of Weak Noncompactness Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stability of the Essential Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.8.1 By Means of Measure of Weak Noncompactness . . . . . . 7.8.2 By Means of the Graph Measure of Weak Noncompactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.8.3 By Measure of Non-upper Semi-Fredholm Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.8.4 Generalized Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.8.5 Convergence to Zero Compactly . . . . . . . . . . . . . . . . . . . . . . . . Borel Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Spectral Mapping Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A Characterization of Polynomially Riesz Strongly Continuous Semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.11.1 Polynomially Fredholm Perturbations . . . . . . . . . . . . . . . . . . 7.11.2 Polynomially Riesz Operator. . . . . . . . . . . . . . . . . . . . . . . . . . . . A Spectral Characterization of the Uniform Continuity of Strongly Continuous Groups. . . . . . . . . . . . . . . . . . . . . . . . 200 204 204 212 214 216 216 218 221 227 229 231 231 234 236 237 241 245 249 249 250 252 253 257 260 265 267 267 268 274 Contents 7.13 8 9 10 xiii Some Results on Strongly Continuous Semigroups of Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 7.13.1 Arbitrary Banach Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 7.13.2 Hereditarily Indecomposable Banach Spaces . . . . . . . . . . 280 Pseudo-Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1 Pseudo-Spectrum of Linear Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1.1 Approximation of "-Pseudo-Spectrum. . . . . . . . . . . . . . . . . . 8.1.2 Approximation of the Spectrum. . . . . . . . . . . . . . . . . . . . . . . . . 8.2 Pseudo-Browder’s Essential Spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2.1 Extending the Resolvent to a Browder Resolvent b .:/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2.2 Definition of the Pseudo-Browder Essential Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2.3 Pseudo-Browder’s Essential Spectrum of Linear Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2.4 Characterization of the Pseudo-Browder Essential Spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2.5 Stability of the Pseudo-Browder’s Essential Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3 Pseudo-Jeribi and Pseudo-Schechter Essential Spectra . . . . . . . . . . . 8.3.1 By Means of a Fredholm and Semi-Fredholm Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3.2 By Means of Noncompactness Measure . . . . . . . . . . . . . . . . 283 283 285 288 293 S -Essential Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1 Definitions and Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2 Characterization of S-Essential Spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3 The S -Browder’s Essential Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.4 S -Essential Spectra of the Sum of Bounded Linear Operators . . . 9.5 S -Essential Spectra by Means of Demicompact Operators . . . . . . . 9.6 Characterization of the Relative Schechter’s and Approximate Essential Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 309 311 313 319 323 Essential Spectra of 2 2 Block Operator Matrices. . . . . . . . . . . . . . . . . . . . 10.1 Case Where the Resolvent of the Operator A Is a Fredholm Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.1 Frobenius–Schur’s Decomposition . . . . . . . . . . . . . . . . . . . . . 10.1.2 Closability and Closure of the Block Operator Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.3 Essential Spectra of L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.4 Sufficient Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2 Case Where the Operator A Is Closed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.1 Closability and Closure of the Block Operator Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 293 295 296 297 299 300 301 306 325 328 328 332 333 336 338 339 xiv Contents 10.3 10.4 10.5 10.6 10.7 11 12 10.2.2 Essential Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.3 Particular Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Case Where the Operator A Is Closable . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.1 Closability and Closure of the Block Operator Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.2 Essential Spectra of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.3 The Operator A as an Infinitesimal Generator of a Holomorphic Semigroup. . . . . . . . . . . . . . . . Relative Boundedness for Block Operator Matrices . . . . . . . . . . . . . . Stability of the Wolf Essential Spectrum of Some Matrix Operators Acting in Friedrichs Module. . . . . . . . . . . . . . . . . . . . Wolf Essential Spectrum of Block Operator Matrix Acting in Friedrichs Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The M -Essential Spectra of Block Operator Matrices . . . . . . . . . . . . 10.7.1 Closability and Closure of the Block Operator Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.7.2 Essential Spectra of L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 343 346 347 351 360 362 367 369 371 372 373 Essential Spectra of 3 3 Block Operator Matrices. . . . . . . . . . . . . . . . . . . . 11.1 Case Where the Operator A Is Closed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.1 The Operator L0 and Its Closure . . . . . . . . . . . . . . . . . . . . . . . . 11.1.2 Essential Spectra of the Operator L . . . . . . . . . . . . . . . . . . . . . 11.2 Case Where the Operator A Is Closable . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2.1 Closability and Closure of the Operator L0 . . . . . . . . . . . . 11.2.2 Gustafson, Weidman, Kato, Wolf, Schechter, Browder, Rakočević, and Schmoeger’s Essential Spectra of L . . . . . . . . . . . . . . . . . . . . 11.3 Block Operator Matrices Using Browder Resolvent . . . . . . . . . . . . . . 11.3.1 The Operator A0 and Its Closure. . . . . . . . . . . . . . . . . . . . . . . . 11.3.2 Rakočević and Schmoeger Essential Spectra of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4 Perturbations of Unbounded Fredholm Linear Operators. . . . . . . . . 11.4.1 The Operator A and Its Closure . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.2 Index of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 407 407 410 Spectral Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1 Line graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2 Operators on Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.3 Lower Local Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4 On the Persson’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.1 Spectral Measure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.2 Persson’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5 Essential Self-Adjointness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5.1 Unbounded Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5.2 A Counter Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413 413 415 416 421 421 421 423 423 425 375 375 375 379 381 382 392 398 398 Contents 12.5.3 Nelson Commutator Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5.4 Application on Schur Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Adjacency Matrix on Line Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.6.1 Oriented Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.6.2 Case of Bipartite Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 429 430 430 434 Applications in Mathematical Physics and Biology . . . . . . . . . . . . . . . . . . . . . 13.1 Time-Asymptotic Description of the Solution for a Transport Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.1.1 Preliminaries and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.1.2 Compactness and Generation Results. . . . . . . . . . . . . . . . . . . 13.1.3 Auxiliary Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.1.4 Solution for the Cauchy Problem (13.1.1) . . . . . . . . . . . . . . 13.1.5 Generation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.1.6 Time-Asymptotic Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2 Time-Asymptotic Behavior of the Solution for a Cauchy Problem Given by a One-Velocity Transport Operator with Maxwell Boundary Condition . . . . . . . . . . 13.2.1 Auxiliary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.2 The Resolvent of the Operator B˛ . . . . . . . . . . . . . . . . . . . . . . 13.2.3 Generation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.4 Asymptotic Behavior of the Solution . . . . . . . . . . . . . . . . . . . 13.3 The Time-Asymptotic Behavior of a Transport Operator with a Diffuse Reflection Boundary Condition . . . . . . . . . 13.3.1 The Resolvent of the Operator B . . . . . . . . . . . . . . . . . . . . . . . 13.3.2 Compactness and Generation Results. . . . . . . . . . . . . . . . . . . 13.3.3 Asymptotic Behavior of the Solution . . . . . . . . . . . . . . . . . . . 13.4 Essential Spectra of Transport Operator Arising in Growing Cell Populations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.4.1 The Resolvent of the Operator SK . . . . . . . . . . . . . . . . . . . . . . 13.4.2 Spectral Properties of SK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.4.3 Generation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.4.4 Compactness Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.4.5 The Irreducibility of the Semigroup e tAk . . . . . . . . . . . . . . . 13.4.6 Existence of the Leading Eigenvalues of AK . . . . . . . . . . . 13.4.7 The Strict Monotonicity of the Leading Eigenvalue of AK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.4.8 Essential Spectra of AK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.5 Some Applications of the Regularity and Irreducibility on Transport Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.5.1 Weak Compactness Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.5.2 Essential Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.5.3 Existence Results of Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . 13.5.4 Monotonicity of the Spectral Bound . . . . . . . . . . . . . . . . . . . . 13.6 Singular Neutron Transport Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441 12.6 13 xv 441 442 446 450 464 464 465 469 470 473 475 477 481 484 487 491 496 496 498 505 508 510 512 515 517 519 522 526 527 532 533 xvi Contents 13.7 13.8 13.9 13.10 13.11 13.12 13.13 Systems of Ordinary Differential Operators . . . . . . . . . . . . . . . . . . . . . . . Essential Spectra of Two-Group Transport Operators . . . . . . . . . . . . 13.8.1 The Expression of the Resolvent of TH1 . . . . . . . . . . . . . . . . 13.8.2 Compactness Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.8.3 Essential Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Elliptic Problems with -Dependent Boundary Conditions . . . . . . 13.9.1 The Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.9.2 Verification of the Assumptions .J1/–.J 8/ of Chap. 10, Sect. 10.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.9.3 The Closure of the Operator A0 . . . . . . . . . . . . . . . . . . . . . . . . . 13.9.4 Spectrum of the Operator A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.9.5 Semigroup Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Delay Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A -Rational Sturm–Liouville’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . Two-Group Radiative Transfer Equations in a Channel. . . . . . . . . . . 13.12.1 Functional Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.12.2 The Expression of the Resolvent of the Operator T2H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.12.3 Essential Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Three-Group Transport Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537 544 545 547 550 553 553 555 556 557 558 559 561 563 563 566 568 573 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593 Chapter 1 Introduction This book is devoted to some recent mathematical developments which cover several topics including Cauchy problem, Fredholm operators, spectral theory, and block operator matrices, both dealing with linear operators. Of course, these topics play a crucial role in many branches of mathematics and also in numerous applications as they are intimately related to the stability of the underlying physical systems. One of the objectives of this book is the study of the classical Riesz theory of polynomially compact operators, in order to establish the existence results of the second kind operator equations, hence allowing to describe the spectrum, multiplicities, and localization of the eigenvalues of polynomially compact operators. Fredholm theory and perturbation results are also widely investigated. The description of the large time behavior of solutions to an abstract Cauchy problem on Banach spaces without restriction on the initial data is studied. Further, the essential state of the art of research and essential pseudo-spectra of closed, densely defined, and linear operators subjected to additive perturbations is outlined. The spectral theory of block operator matrices is of major interest, since it describes coupled systems of partial differential equations of mixed order and type. For this reason, an important part of this book is devoted to develop essential spectra of 2 2 and 3 3 block operator matrices. Based on the spectral graph theory (which is an active research area), we are interested in the study of the adjacency matrix and the discrete Laplacian acting on forms. Most of the results of this book are motivated by physical transport problems for which we address our applications at the end of the book. Now, let us describe its contents. © Springer International Publishing Switzerland 2015 A. Jeribi, Spectral Theory and Applications of Linear Operators and Block Operator Matrices, DOI 10.1007/978-3-319-17566-9_1 1 2 1 Introduction 1.1 Spectral Theory and Cauchy Problem As it is well known for the second kind operator equations ' A' D f (1.1.1) in Banach spaces, the existence and uniqueness of a solution can be established by the Neumann series, provided that A is a contraction, i.e., kAk < jj. The basic theory for the second kind operator equation (1.1.1) with a compact linear operator A on X was developed by F. Riesz [294] and originated by I. Fredholm’s work on the second kind integral equations [113]. In [171, 254], A. Jeribi and N. Moalla extended this analysis to the polynomially compact operator A in the more general setting of normed spaces. Such an extension provided some solutions for several physical problems. In fact, if A is a polynomially compact operator onP a normed p r space X , i.e., there exists a nonzero complex polynomial P .z/ D rD0 ar z satisfying P .A/ 2 K.X / (the set of compact operators), and if 2 C with P ./ ¤ 0, then we have two cases: if the homogeneous equation ' A' D 0 (1.1.2) only has the trivial solution ' D 0 then, for all f 2 X , the non-homogeneous equation (1.1.1) has a unique solution ' 2 X which depends continuously on f . If the homogeneous equation (1.1.2) has a nontrivial solution, then the nonhomogeneous equation (1.1.1) is either unsolvable or its general solution is of the following form ' D 'Q C m X ˛k 'k ; kD1 where '1 ; : : : ; 'm are linearly independent solutions of the homogeneous equation, ˛1 ; : : : ; ˛m represent arbitrary complex numbers, and 'Q denotes a particular solution of the non-homogeneous equation (1.1.1). The structure of polynomially compact operators was described by F. Gilfeather [117] and by Y. M. Han et al. [146] in the context of Hilbert spaces. F. Gilfeather showed that every polynomially compact operator on a Banach space is the finite direct sum of translates of operators which have the property that the finite power of the operator is compact. Moreover, the spectrum of these operators can be described. This analysis was widely developed by V. I. Istrateescu in [156]. It is well known that, if X is a complex Banach space, and if A 2 K.X /, then A and A (the dual of A) are Riesz operators, with .A / D .A/ (see [191]). Furthermore, N. Dunford and J. T. Schwartz showed in [101] that, for any eigenvalue 2 .A/nf0g, we have mult.A; / < 1 and mult.A; / D mult.A ; /, where mult.:; :/ represents the algebraic multiplicity. 1.1 Spectral Theory and Cauchy Problem 3 Let us notice that, if A is a Riesz operator on X , then A is a generalized Riesz operator on X . One of the purposes of the Chap. 2 is to prove that a polynomially compact operator is also a generalized Riesz operator. PpLet A r 2 PK.X /, i.e., there exists a nonzero complex polynomial P .z/ D rD0 ar z satisfying P .A/ 2 K.X /. In [171], A. Jeribi and N. Moalla expressed the multiplicity of a nonzero eigenvalue of P .A/ according to the one of the eigenvalues of the operator A, and proved that, if B 2 L.Y / such that A and B are related operators, then B is a generalized Riesz operator and mult.A; / D mult.B; / for all 2 .A/nf0; z1 ; : : : ; zk g, where z1 ; : : : ; zk are the zeroes of the minimal polynomial of A. In [84], J. R. Cuthbert considered a class of C0 -semigroups .T .t //t0 satisfying the property of being near the identity, which means that, for some values of t , T .t / I 2 K.X /. Cuthbert’s result asserts that, if .T .t //t0 is a C0 -semigroup with an infinitesimal generator A, then the following conditions are equivalent: (i) ft > 0 such that T .t / I is compactg D0; 1Œ, (ii) A is compact, and (iii) . A/1 I is compact for some (and then, for all) > w, where w denotes the type of .T .t //t0 . Cuthbert’s result was extended by several authors. Their aim was to study other strongly continuous families of operators such as cosine or resolvent families of operators (see [151, 235, 240]). For example, in the paper [218], the authors have shown that the assertions (i), (ii), and (iii) remain equivalent for strongly continuous semigroups .T .t //t0 near the identity, which explains the existence of t0 > 0, such that T .t0 /I 2 I.X /, where I.X / represents any arbitrary, closed, and proper two-sided ideal of the algebra L.X / belonging to F.X / (the set of Fredholm perturbations). Let us remark that, in all these works, the generator A is either compact or belongs to an ideal of L.X / contained in F.X /. The general case was considered in [155], where A was a Riesz operator, not necessarily belonging to F.X /. We say that an operator A 2 L.X / belongs to P I.X /, if there exists a nonzero complex polynomial p.:/, such that the operator p.A/ 2 I.X /. In [225], the results obtained in [84, 155], and [218] were extended to semigroups for which there exists a nontrivial polynomial p.:/ 2 CŒz such that, for some t > 0, p.T .t // 2 I.X /. As opposed to the previous results, in this case, the infinitesimal generator of the semigroup is not necessarily a Riesz operator. In [229], the authors characterized the class of polynomially Riesz strongly continuous semigroups on a Banach space X . In particular, their main results assert that the generators of such semigroups are either polynomially Riesz (then bounded) or there exist two closed, infinite-dimensional, and invariant subspaces X0 and X1 of X with X D X0 ˚X1 , such that the part of the generator in X0 is unbounded with a resolvent of Riesz type, whereas its part in X1 is a polynomially Riesz operator. In Chap. 2 of his thesis [351], M. Yahdi discussed the topological complexity of some subsets of L.X /, under the assumptions that X is a separable Banach space and L.X / is endowed with the strong operator topology. In particular, M. Yahdi showed that the families of stable, ergodic, and power-bounded operators constitute
© Copyright 2025 Paperzz