MAT341E Theory of Complex Functions Worksheet 3 6 November 2007 Beycan Kahraman 040020337 1. Show that each of the following functions are differentiable in the indicated domain of definition and find f ' ( z ) . 1 ( z 0) a) f ( z ) 4 z 1 f ( z ) 4 4i r 4e 4i r 4 (cos 4 i sin 4 ) r e 4 1 u r cos 4 v r 4 sin 4 ur r v 5 5 ur 4r cos 4 vr 4r sin 4 1 vr u 4 4 u 4r sin 4 v 4r cos 4 r By Couchy-Riemann equations for polar coordinates, the function is differentiable and f ' ( z ) e i u r iv r e i 4r 5 cos 4 4ir 5 sin 4 4r 5 e i e 4i 4r 5 e 5i b) f ( z ) r e i 2 (r 0, ) f ( z ) r cos i sin 2 2 2 2 1 u v r 1 1 r ur cos vr sin differentiable 2 2 v 1 u 2 r 2 r r r r r u sin v cos 2 2 2 2 i i i 1 i 2 1 2 1 f ' ( z ) e i u r iv r e i cos sin e e e 2 2 r 2 2 r 2 r 2 r u r cos v r sin c) f ( z ) e cos(ln r ) ie sin(ln r ) f ( z) e cos(ln r ) i sin(ln r ) u e cos(ln r ) (r 0, 0 2 ) v e sin(ln r ) 1 e sin(ln r ) e cos(ln r ) u r r v ur vr differentiable 1 r r v r u r u e cos(ln r ) v e sin(ln r ) e sin(ln r ) e cos(ln r ) e e i i i sin(ln r ) i cos(ln r ) f ' ( z ) e u r iv r e i r r r 2. Suppose that a function f ( z ) u iv is differentiable at a nonzero point z0 r0ei 0 . Show that f ' ( z 0 ) can be written as f ' ( z0 ) e i (ur ivr ) where ur and vr are evaluated at (r0 ,0 ) . f ( z0 z ) f ( z0 ) z 0 z v u f ' ( z0 ) i x ( x0 , y0 ) x f ' ( z0 ) lim x r cos y r sin u r u v r v f ' (r0ei 0 ) i r x x r x x ( r0 ,0 ) u r v v r u f ' (r0ei 0 ) r r i r x r x r x ( r , ) r x 0 0 u r v r f ' (r0ei 0 ) ir i r x r x x ( r , ) r x 0 0 u r u v r v r f ' (r0ei 0 ) ir i ir i ir x r x x ( r , ) r r x x ( r , ) r x 0 0 0 0 u u v sin v f ' (r0ei 0 ) i cos ir i cos i sin r r ( r , ) r r r ( r0 ,0 ) 0 0 v u f ' (r0ei 0 ) e i i e i ur ivr ( r , ) 0 0 r ( r0 ,0 ) r 3. Show that the following functions are entire a) f ( z ) 3x y i (3 y x) f ( z ) u ( x, y ) iv ( x, y ) u ( x, y ) 3 x y v ( x, y ) 3 y x ux 3 vy 3 uy 1 vx 1 ux vy u y v x Couchy Riemann are satisfied at every poınt. Therefore, entire. b) f ( z ) 2 xy i( x 2 y 2 ) u ( x, y ) 2 xy v( x, y ) x 2 y 2 ux 2 y v y 2 y They are not equal. Therefore, not entire. c) f ( z ) e y eix f ( z ) e y cos x i sin x u ( x, y ) cos x.e y v( x, y ) sin x.e y u x sin x.e v y sin x.e y y They are not equal. Therefore, not entire. 4. Show that u ( x, y ) is harmonic in some domain & find a harmonic conjugate v ( x, y ) when a) u ( x, y ) sinh x. sin y u x cosh x.sin y u y sinh x. cos y u xx u yy 0 (harmonic ) u xx sinh x.sin y u yy sinh x.sin y ux vy v( x, y ) cosh x. cos y c b) u ( x, y ) ux u xx y x y2 2 x 2 xy 2 y2 x2 y2 2 y2 uy 2 2 x 2 y2 2 y x2 y 2 8x2 y x2 y 2 u xx u yy x 2 y x u xx u yy y 2 y2 2 2 2 2 u yy 2 4 2 8 x yx x x2 y 2 x 2 y2 2 x 2 ux vy 2 u y 6 xy u xx 6 x u yy 6 x ux vy y y y 2 4 2 4 2 3 v ( x, y ) c) u( x, y) 2 x x3 3xy2 u x 2 3x 2 3 y 2 u xx u yy 0 2 2 y2 2 y x2 y2 4 y x2 y2 x2 y2 2 y x2 y 2 8x2 y 2 y x2 y 2 4 y x2 y 2 x 2 2 y x2 y 2 4 y x2 y 2 x2 y 2 0 harmonic x c x y2 2 harmonic v( x, y ) 2 y 3 yx 2 y 3 c 5. Let the function f ( z ) u (r , ) iv (r , ) be analytic in a domain D that does not include the origin. Using the Couchy-Riemann equations in polar coordinates and assuming continuity of partial derivatives, show that, throughout D, the function u ( r , ) satisfies the partial differential equation r 2 u rr (r , ) ru r (r , ) u (r , ) 0 which is the polar form of Laplace’s equation. Since analytic : 1 1 ur v vr u r r 1 1 1 urr 2 v vr vr u r r r 2 r urr v u 0 r 2urr ru r u 0 urr 1 1 v 2 u 2 r r 6. Show that a) sinh( z i ) sinh z e z i e z i e z cos i sin e z cos i sin e z e z sinh z 2 2 2 sinh( z i) b) cosh( z i) cosh z cosh( z i) 7. Compute e z i e z i e z cos i sin e z cos i sin e z e z cosh z 2 2 2 f ( z )dz for f ( z ) ez and C is the boundary of the square with vertices at the C points 0, 1, i 1, i and the orientation of C is counterclockwise. e z 1 1 dz e dx i e C x 0 (1 iy ) 0 dy e 0 x 1 e 0 ( x i ) dx i e iy dy 1 1 ie sin y i cos y 0 e e i x 0 1 e 1 ie i i 1 e i i i 1 i sin y i cos y 1 0 2 e 1 2e 2 2 e 1 2 e 1 4 e 1 8. 0 and C is the arc form z 1 i to z 1 i along the curve y x 3 . Find f ( z )dz ? y0 1, f ( z) 4 y, y0 C yt , xt 1 t 1 z t it dz 1 3it 2 dt 3 f ( z )dz f ( z )dz f ( z )dz 1 3it dt 4t 1 3it dt 3 0 1 0 1 2 C 1 t it 3 0 1 0 t 4 2it 1 6 1 0 3 2 0 (1 i ) (1 2i ) 2 3i z2 , find the contour integral of f (z ) over C , where C is z a) the semicircle z 2e i , 0 9. f ( z ) C 2ei 2 i z 2 i f ( z )dz 2ie d 2i e 1 d 2i (cos i sin ) 1d dz z 2ei C C 0 0 2isin i cos 0 2isin i cos sin 0 i cos 0 2ii i 2i 4 b) the semicircle z 2e i , C 2 2 2e 2 i 2 z 2 f ( z )dz 2ie d 2i ei 1 d 2isin i cos dz i z 2e C C 2isin 2 i cos 2 2 sin i cos 2i i 2 i 2i 4 i c) the semicircle z 2e i , C 0 2 2 2ei 2 i 2 z 2 f ( z )dz dz 2 ie d 2 i ei 1 d 2isin i cos 0 i z 2e C C 0 2isin 2 i cos 2 2 sin 0 i cos 0 0 2i i 2 i 4i OR f ( z) dz By the theorem given in lesson ( for closed contours) : f ( z0 ).2i z z 0 C z 2 C f ( z )dz C z dz 22i 4i x r cos y r sin Couchy-Riemann equations for rectangular coordinates: ux vy v x u y Let’s calculate these in polar form: u u u 1 i. x x r sin Since these are equal: 1 vr u r u u r u 1 ii. y r y r sin Since these are equal: 1 u r v r v v r v 1 y r y r sin v v v 1 x x r r sin
© Copyright 2026 Paperzz