PARTIAL FRACTIONS IN SHOCK AND VIBRATION ANALYSIS Revision K By Tom Irvine Email: [email protected] January 11, 2013 Introduction Transforming a fraction into the sum of partial fractions is an intermediate step in the solution of certain shock and vibration problems. The purpose of this tutorial is to summarize some common cases. Term 1 s Appendix 2 s 2 2 n s n 1 s 2 2 1 2 s 2 2n s n s s s s , A B C 1 1 2 j 2 1 2 j 2 1 D 1 j 2 1 j 2 1 2 j 2 1 2 j 2 E s2 , ab s a s b F s4 , a b, a c, a d, b c, b d, c d s a s b s c s d G 1 Term Appendix s H s a 2 1 s 2 2 s 2 I 1 1 s 2 s 2 2 J Note that 2 2 s 2 2n s n s n 2 n 2 n 2 (1) 2 2 s 2 2n s n s n 2 n 1 2 (2) 2 2 s 2 2n s n s n 2 d (3) where n 1 2 d (4) Thus, 1 2 s 2 2n s n 1 s n 2 d2 2 (5) The inverse Laplace transform f(t) of equation (5) is f (t) 1 exp n t sin d t d (6) Furthermore, consider the Laplace transform F̂(s) s n s n 2 d2 (7) The inverse Laplace transform f̂ ( t ) is f̂ ( t ) exp n t cosd t 3 (8) APPENDIX A Example 1 1 s 2 s s 2 2n s n 2 s 2 2n s n s 1 2 1 s 2 2 n s n s s 2 1 s 2 2 n s n s 2 s 1 s 2 2n s n 2 (A-1) (A-2) (A-3) (A-4) Equation (A-4) implies three separate equations. 0 (A-5) 2n 0 (A-6) 2 n 1 (A-7) Equation (A-7) yields 1 2 n 1 2 n 2n 4 (A-8) (A-9) (A-10) (A-11) 1 2 n 2 n (A-12) 2 (A-13) n Equation (A-1) can thus be expressed as 1 s 2 2 s 2 n s n 1 1 2 n s 2 2 s 2 n s n 1 2 s 2 n n (A-14) 1 s 1 1 1 2 2 s 2 s 2 2n s n n n 2 s 2 2n s n (A-15) 1 s 1 1 1 2 2 2 s 2 2 n s n n s n s 2n 2 s n 2 d (A-16) 1 1 5 s 2n The following form is a more convenient format prior to taking the inverse Laplace transformation, 1 s 1 2 2 s 2 2 n s n n 1 s 1 1 2 n s n 2 s n 2 d 1 2 n s n 2 d2 n (A-17) 1 s 1 1 2 2 s s 2 2 n s n n 1 1 2 n s n s n 2 d2 1 n 2 d n s n 2 d2 d (A-18) The inverse Laplace transform is f (t) 1 1 u(t) exp n t cosd t n sin d t , t 0 2 2 d n n where u(t) is the unit step function. 6 (A-19) APPENDIX B Example 2 Equation (B-1) effectively represents a number of cases since and may each be set equal to zero. 1 2 2 s s 2 2 2 s s 2 2ns n s 2 s 2 2ns n s (B-1) Multiply through by the common denominator. s s s 2 2n s n s s 2 2 2 (B-2) 2 2 s s3 2n s 2 2n n s n s3 s 2 2s 2 (B-3) s s3 2n s 2 (B-4) 2 2n n 2 s n 2 2 Equation (B-4) implies four separate equations. 0 (B-5) 2n 0 (B-6) 7 2 2n n 2 (B-7) 2 (B-8) n 2 Equations (B-5) through (B-8) can be assembled into matrix form. 1 2 n n2 0 0 0 0 0 1 0 2 0 0 2 1 1 2n 2 n (B-9) Gaussian elimination is used to simplify the coefficient matrix. 0 1 0 1 0 2n 2 0 n 1 2n 2 2 n 0 0 0 1 0 0 2 (B-10) Equation (B-10) can be reduced to a 3 x 3 matrix. 1 2n 2 n 2n 2 2 n 0 1 0 0 2 (B-11) Complete the solution using Cramer’s rule. 1 det 2n 2 n 2n 2 2 n 0 1 2 2 2 0 2 2 n 2 2n 2 n 2 n 2 8 (B-12) 1 det 2n 2 n 2n 2 2 n 0 1 2 2 0 2 n 2 n 2 2 (B-13) 1 0 2n 2 2 det n 0 2 2 2 2 2 0 2 n n (B-14) 1 2 2 2n 2 n 2 2 2 2 2 n n (B-15) 1 det 2n 2 2 2 2 2 2 n n n 1 1 0 2 0 (B-16) 2 2 2n n (B-17a) 2 2 2 2 2 n n 2 2 2 n n 2 2 2 2 2 n n (B-17b) Recall equation (B-5). (B-18) 9 2 2 2 n n 2 2 2 2 2 n n (B-19) 1 det 2n 2 2 2 2 2 2 n n n 1 2n 2 2 n 0 0 2 2 2 2 2 3 n n n 2 2 2 2 2 n n 2 2 2 2 2 3 n n n 2 2 2 2 2 n n (B-20) (B-21a) (B-21b) The coefficients are summarized in equation (B-22). 2 2 n 2n 2 2 2n 2 n 1 2 2 2 2 2 2 2 n n n 2 n 3 2 2 2 2n n 2n (B-22a) 10 1 2 2 2 2 n 2 n 2 2 2n n 2 2 n 2 2 n 2n 2 2 n 2 2 2 2 n n 3 2n (B-22b) Equation (B-1) can thus be rewritten as 1 s 2 2 2 2 s 2 n s n s 2 2 2 2 2 n 2n s 2 n n 2 2 2 n 2 n 2 s 2 2 2 2 2 3 2 2 n 2n s 2n n 2n 2 2 2 2 n 2 n 2 s 2 2 n s n (B-23) 11 An alternate form is 1 2 s 2 2 s 2 2 n s n s 2 2 s 2 2 n n 2 2 2 2 2 2 n 2 n s 2n s 2 n2 2 2 2 2 2 2 n 2 n s 2 2 s 2 3 n n 2 2 2 2 2 2 n 2 n s 2 n s n 2n s 2 n2 2n 2 2 2 2 2 2 2 n 2 n s 2 n s n (B-24) 12 1 2 s 2 2 s 2 2 n s n s 2 2 s 2 2 n n 2 2 2 2 2 2 n 2 n s 2n s 2 n2 2 2 2 2 2 2 n 2 n s 2 2 s 2 3 n n 2 2 2 2 2 2 n 2 n s n d 2n s 2 n2 2n 2 2 2 2 n 2 2 n 2 s n 2 d (B-25) 13 The inverse Laplace transforms for the four terms on the left-hand-side are found as follows 2 2 2 n s 2 n F1 (s) 2 2 2 n 2 n 2 s 2 2 f1 ( t ) 2 2 2 n 2 n 2 (B-26) 2 2 n cost 2 n sin t (B-27) F2 (s) f 2 (t) 2n s 2 n2 2 2 2 n 2 n 2 s 2 2 (B-28) 1 2 2 2n cost n sin t 2 2 2 n 2 n 2 (B-29) 14 2 2 3 n s 2n F3 (s) 2 2 2 2 n 2 n 2 s n 2 d F3 (s) F3 (s) 2 2 2 n 2 2 2 n 2 2 2 n (B-30) 2 2 n s 2 2 n 2 s n 2 d 2 3 n 2 2 n 2 s n 2 d (B-31) 2 2 n s 2 2 n 2 s n 2 d 2 3 d n 2 d 2 2 2 2 s 2 2 n n n d (B-32) 15 f 3 (t) exp n t 2 2 2 n 2 n 2 3 2 2 cos t 2n sin t d d n d (B-33) F4 (s) 2n s 2 n2 2n 2 2 2 2 n 2 n 2 s n 2 d F4 (s) 2n 2 1 2 2 2 2 n n 2n 2 2 2 2 2 2 n 2 n s n d (B-34) s 16 (B-35) 1 2 2 n 2n 2 n 2n exp n t 2n f4 (t) cos t sin t d d 2 2 d 2 2 n 2 n f 4 (t) f4 (t) exp n t 2 2 2 2 n 2 n exp n t 2 2 2 2 n 2 n 2 2 2 n 2n n 2n 2n cosd t d sin d t 2 2 2 2 2 n 2n 2 n 2 cos t sin t n d d d 17 (B-36) (B-37) (B-38) 2 2 2 2 n n exp n t f 4 (t) 2 cos t sin t n d d 2 d 2 2 2 n 2 n 18 (B-39) APPENDIX C Example 3 Equation (C-1) effectively represents a number of cases since and may each be set equal to zero. s p m s s s s s , p m s s s s s s (C-1) (C-2) s p s m s (C-3) s p s p m s m (C-4) s p ms p m (C-5) Equation (C-5) implies equations (C-6) and (C-7). p m (C-6) p m (C-7) Equation (C-6) yields m p (C-8) Substitute equation (C-8) into (C-7). p p (C-9) p (C-10) p (C-11) 19 p (C-12) (C-13) p Substitute equation (C-13) into (C-8). m m (C-14) m (C-15) m (C-16) m (C-17) (C-18) Substitute equations (C-18) and (C-13) into (C-1). s 1 s s s s (C-19) The inverse Laplace transform is 1 1 1 f (t ) sin t sin t 20 (C-20) APPENDIX D Example 4 The transfer function H times its complex conjugate is 1 1 HH * 2 j 2 1 2 j 2 1 (D-1) Solve for the roots R1 and R2 of the first denominator. R1, R 2 R1, R 2 j2 j22 4(1) 2 j2 42 4 2 (D-2) (D-3) R1, R 2 j 1 2 (D-4) Solve for the roots R3 and R4 of the second denominator. R 3, R 4 R 3, R 4 j j22 4(1) 2 j2 42 4 2 (D-5) (D-6) R 3, R 4 j 1 2 (D-7) (D-8) Summary, R1 j 1 2 (D-9) 21 R 2 j 1 2 (D-10) R 3 j 1 2 (D-11) R 4 j 1 2 (D-12) Note R2 = -R1* (D-13) R3 = R1* (D-14) R4 = -R1* (D-15) Now substitute into the denominators. 1 HH * 2 2 2 2 j 1 j 1 j 1 j 1 (D-16) 1 H H * R1 R 2 R 3 R 4 (D-17) 1 H H * R1 R1 * R1 * R1 (D-18) 22 Expand into partial fractions. 1 R1 R1 * R1 * R1 R1 R1* R1* R1 (D-19) Multiply through by the denominator on the left-hand side of equation (D-19). R1 R1 * R1 * R1 R1 R1 R1* R1* R1 R1 * R1 R1* R1* R1 R1 * R1 R1* R1 * R1 R1 1 (D-20) 1 R1* R1* R1 R1 R1* R1 R1 R1* R1 R1 R1* R1* (D-21) 23 2 R1 R1* R1R1* R1 2 R1 R1* R1R1* R1 2 R1 R1* R1R1* R1* 2 R1*2 R1 1 (D-22) 1 3 R1 2 R1 *2 R1R1 *2 3 R1 R1 R1 * 2 R1R1 * R12 R1R1 * R12 R1 * 3 R1 * R1 R1 * 2 R1R1 * R1R1 * R1 *2 R1R1 *2 3 R1 R1 R1 * 2 R1R1 * R12 R1R1 * R12 R1 * (D-23) 1 3 R1 * 2 R12 R12 R1 * 3 R1 * 2 R12 R12 R1 * 3 R1 2 R1 *2 R1R1 *2 3 R1 2 R1 *2 R1R1 *2 (D-24) 1 3 R1 R1* R1* R1 2 R1 *2 R12 R12 R1*2 R1R1 *2 R12 R1 * R12 R1 * R1R1 *2 (D-25) 24 1 3 R1 R1* R1* R1 2 R1*2 R12 R12 R1*2 R1* R1 R1 R1* R1R1* (D-26) Equation (D-26) can be broken up into four separate equations, 0 (D-27) R1 R1* R1* R1 0 (D-28) R1 *2 R12 R12 R1 *2 0 (D-29) R1* R1 R1 R1* R1R1* (D-30) 1 The four equations are assembled into matrix form. 1 R1 R1*2 R1* 1 R1* R12 R1 0 R1* R1 0 R12 R1*2 0 R1 R1* 1 / R1R1* 1 1 (D-31) Recall R1 j 1 2 (D-32) R1R1* j 1 2 j 1 2 (D-33) 25 R1 R1* =1 1 R1 R1*2 R1* 1 R1* R12 R1 (D-34) 0 R1* R1 0 R12 R1*2 0 R1 R1* 1 1 1 (D-35) Multiply the first row by R1 *2 and add to the third row. 1 1 R1 R1* 0 R12 R1*2 R1 R1* 1 R1* R12 R1*2 R1 1 0 R1 0 0 0 R1* 1 (D-36) Scale the third row. 1 1 1 0 1 R1 R1* R1* R1 0 0 1 1 0 0 R1* R1 R1 R1* 1 (D-37) Multiply the third row by -1 and add to the first row. 0 0 1 0 1 R1 R1* R1* R1 0 0 1 1 0 0 R1* R1 R1 R1* 1 (D-38) 26 Multiply the first row by -R1 and add to the second row. Also multiply the first row by R1* and add to the fourth row. 0 0 1 0 1 0 R1* R1* 2 R1 0 0 1 1 0 0 0 R1 R1 2 R1* 1 (D-39) Multiply the third row by -R1* and add to the second row. Also, multiply the third row by R1 and add to the fourth row. 0 0 2R1* 2 R1 0 1 1 0 0 0 2R1 2 R1* 1 1 0 0 0 0 0 1 (D-40) The first row equation yields (D-41) The third row equation yields (D-42) Equation (D-40) thus reduces to 2R1 * 2R1 0 2R1 2R1 * 1 (D-43) 2R1 * 2R1 0 (D-44) R1 * R1 (D-45) R1 R1 * (D-46) 2R1 2R1* 1 (D-47) 27 R1 2R1 R1* 2R1* 1 1 R1 R1* R1 2 R1* 1 1 2 R1 R 1 * R1 R1* 1 R1* 2 [ R12 R1*2 ] (D-48) (D-49) (D-50) (D-51) R1 R1 * (D-52) R1 1 2 [ R12 R1*2 ] (D-53) Recall, (D-54) (D-55) The complete solution set is thus 1 1 2 [ R12 R1*2 R1 * R1 R 1 ] R1 * (D-56) 28 Note that R12 R1 *2 j 4 1 2 (D-57) 1 1 2 2 j 4 1 1 2 j 1 2 j 1 2 j 1 2 j (D-58) j 8 1 2 1 2 j 1 2 j 1 2 j 1 2 j (D-59) j 1 j 2 j 8 1 j 1 2 1 2 1 2 1 2 (D-60) Let (D-61) 1 2 29 j 1 j 8 j j (D-62) Recall R1 j 1 2 (D-63) 1 R1 R1 * R1 * R1 1 8 2 1 j j 1 2 j 8 1 j 1 8 2 1 j j 1 8 2 1 j j (D-64) 30 APPENDIX E Example 5 A transfer function times its complex conjugate is 1 j 2 1 j 2 HH * 1 2 j 2 1 2 j 2 (E-1) Rearrange equation (E-1) as 1 4 2 2 1 HH * 2 j 2 1 2 j 2 1 (E-2) Solve for the roots R1 and R2 of the first denominator. R1, R 2 R1, R 2 j22 4(1) j2 2 42 4 2 j2 R1, R 2 j (E-3) (E-4) 1 2 (E-5) Solve for the roots R3 and R4 of the second denominator. R 3, R 4 R 3, R 4 j2 j22 4(1) 2 j2 R3, R 4 j 42 4 2 (E-6) (E-7) 1 2 (E-8) 31 Summary, R1 j 1 2 (E-9) R 2 j 1 2 (E-10) R3 j 1 2 (E-11) R 4 j 1 2 (E-12) Note R2 = -R1* (E-13) R3 = R1* (E-14) R4 = -R1* (E-15) Now substitute into the denominators. 2 2 1 4 HH * 2 2 2 2 j 1 j 1 j 1 j 1 (E-16) 1 4 2 2 HH * R1 R 2 R 3 R 4 (E-17) By substitution, 1 4 2 2 HH * R1 R1 * R1 * R1 32 (E-18) Expand into partial fractions. 1 4 2 2 R1 R1 * R1 * R1 R1 R1 * R1 * R1 (E-19) Multiply through by the denominator on the left-hand side of equation (E-19). 1 4 2 2 R1 R1 * R1 * R1 R1 R1 R1 * R1 * R1 R1 * R1 R1 * R1 * R1 R1 * R1 R1 * R1 * R1 R1 (E-20) 33 1 4 2 2 R1 * R1 * R1 R1 R1 * R1 R1 R1 * R1 R1 R1 * R1 * (E-21) 1 4 2 2 2 R1 R1 * R1R1 * R1 2 R1 R1 * R1R1 * R1 2 R1 R1 * R1R1 * R1 * 2 R1 *2 R1 (E-22) 1 4 2 2 3 R1 R1 R1 *2 R1R1 * R12 R1R1 * R12 R1 * 3 R1 R1 R1 *2 R1R1 * R12 R1R1 * R12 R1 * 3 R1 * R1 R1 *2 R1R1 * R1R1 * R1 *2 R1R1 *2 3 R12 R1 *2 R1R1 *2 (E-23) 34 1 4 2 2 3 R1 * 2 R12 R12 R1 * 3 R1 * 2 R12 R12 R1 * 3 R12 R1 *2 R1R1 *2 3 R12 R1 *2 R1R1 *2 (E-24) 1 4 2 2 3 R1 R1 * R1 * R1 2 R1 *2 R12 R12 R1 *2 R1R1 *2 R12 R1 * R12 R1 * R1R1 *2 (E-25) 1 4 2 2 3 R1 R1 * R1 * R1 2 R1 *2 R12 R12 R1 *2 R1 * R1 R1 R1 * R1R1 * (E-26) 35 Equation (E-26) can be broken up into four separate equations. 0 (E-27) R1 R1* R1* R1 42 (E-28) R1*2 R12 R12 R1*2 0 (E-29) R1* R1 R1 R1* R1R1* 1 (E-30) The four equations are assembled into matrix form. 1 R1 R1 *2 R1 * 1 R1 * R1 R12 R1 *2 R1 R1 * 1 R1 * R12 R1 1 0 42 0 1 / R1R1 * (E-31) Recall R1 j 1 2 (E-32) R1R1* j 1 2 j 1 2 (E-33) R1 R1* =1 (E-34) By substitution, 1 R1 R1 *2 R1 * 1 R1 * R12 R1 R1 * R1 R12 R1 *2 R1 R1 * 1 1 0 42 0 1 (E-35) 36 Multiply the first row by R1 *2 and add to the third row. 1 1 R1 R1 * 2 0 R1 R1 *2 R1 R1 * 1 R1 0 R1 * 1 R1 * R12 R1 *2 R1 0 42 0 1 (E-36) Scale the third row. 1 1 1 1 R1 R1 * R1 * R1 0 1 1 0 R1 * R1 R1 R1 * 0 42 0 1 (E-37) Multiply the third row by -1 and add to the first row. 0 0 1 1 R1 R1 * R1 * R1 0 1 1 0 R1 * R1 R1 R1 * 0 42 0 1 (E-38) Multiply the first row by -R1 and add to the second row. Also multiply the first row by R1* and add to the fourth row. 0 0 1 1 0 R1 * R1 * 2 R1 0 1 1 0 0 R1 R1 2 R1 * 0 42 0 1 (E-39) Multiply the third row by -R1* and add to the second row. Also, multiply the third row by R1 and add to the fourth row. 37 1 0 0 0 0 2R1 * 2 R1 1 1 0 0 2R1 2 R1 * 0 0 1 0 42 0 1 (E-40) The first row equation yields (E-41) (E-42) The third row equation yields Equation (E-40) thus reduces to 2R1 * 2R1 4 2 2R1 2R1 * 1 (E-43) Complete the solution using Cramer's rule. 2R1 * 2R1 det er min ant 4 R12 R1 *2 2R1 2R1 * (E-44) Recall R1 j 1 2 (E-45) R12 j 1 2 j 1 2 (E-46) R12 2 1 2 j 2 1 2 R12 1 22 j 2 1 2 (E-47) (E-48) R1* j 1 2 (E-49) 38 R1 *2 j 1 2 j 1 2 R1 *2 2 1 2 j 2 1 2 (E-51) (E-50) R1 *2 1 22 j 2 1 2 (E-52) Thus, R12 R1 *2 j 4 1 2 (E-53) 4 R12 R1 *2 j 16 1 2 2R1 * 2R1 determinan t 2 R 1 2 R 1 * (E-54) j 16 1 2 42 determinan t 1 j 16 1 2 1 (E-55) 2R1 2R1 * (E-56) 4 2 2R1 * 2R1 j 16 1 2 (E-57) 4 2 R1 * R1 j 8 1 2 (E-58) Recall, R1 j 1 2 (E-59) 39 4 2 j 1 2 j 1 2 j 8 1 2 1 4 2 1 2 j 1 4 2 1 4 2 j 1 4 2 1 2 (E-61) j 8 1 2 2 8 1 2R1 * 42 det er min ant 2 2 R 1 1 j 16 1 (E-60) 1 (E-62) (E-63) 2R1* 4 2R1 (E-64) R1* 4 R1 (E-65) 2 j 16 1 2 2 j 8 1 2 R1 j 1 2 (E-66) 2 2 2 j 1 4 j 1 j 8 1 2 40 (E-67) j 1 2 j43 42 1 2 j 8 1 2 (E-68) 1 42 1 2 j 1 42 j 8 1 2 (E-69) 1 42 j 1 42 1 2 j 8 1 2 (E-70) Recall, (E-71) (E-72) The complete solution set is thus 1 2 8 1 1 4 2 j 2 1 4 j 2 1 4 j 2 1 4 j 1 4 2 2 1 4 2 1 4 2 1 4 1 2 1 2 2 1 1 2 (E-73) 41 The partial fraction expansion is thus H H * R1 R1 * R1 * R1 (E-74) 42 APPENDIX F s2 s a s b sa sb s 2 s a s b (F-1) s a s b s a s b s a s b (F-2) s 2 s 2 (a b) s ab s b s a (F-3) s 2 s 2 (a b) s ab s b s a (F-4) s 2 s 2 (a b) s ab b a (F-5) Equation (F-5) yields three individual equations. 1 (F-6) (a b) 0 (F-7) ab b a 0 (F-8) (a b) 0 (F-9) ab b a 0 (F-10) (a b ) (F-11) b a ab (F-12) 43 The equations are assembled into matrix form. 1 1 (a b) b a ab (F-13) Apply Cramer’s rule. (a b) 1 1 det a ab ab (F-14) a 2 ab ab ab (F-15) a2 ab (F-16) 1 (a b ) 1 det ab ab b (F-17) ab b(a b) ab (F-18) ab ab b 2 ab (F-19) b2 ab (F-20) The partial fraction expansion is thus a 2 1 b2 s2 1 , a b s a s b a b s a a b s b 44 (F-21) APPENDIX G s4 s a s b s c s d a2 1 2 2 2 b 1 c 1 d 1 1 1 a b s a a b s b c d s c c d s d (G-1) Let a2 A a b (G-2) b2 B a b (G-3) c2 C c d (G-4) d2 D c d (G-5) 45 s4 s a s b s c s d 1 1 1 1 1 A B D 1 C s a s b s c s d (G-6) s4 s a s b s c s d 1 1 1 C D s c s d 1 1 1 A D 1 C s a s c s d 1 1 1 B D 1 C s b s c s d (G-7) s4 s a s b s c s d 1 1 1 C D s c s d 1 1 1 1 1 A C D s a s c s a s d s a 1 1 1 1 1 B C D s b s c s b s d s b (G-8) Recall 1 s a s b 1 1 1 , ab a b s a s b 46 (G-9) s4 s a s b s c s d 1 1 1 C D s c s d 1 1 1 1 1 1 1 A C D a c s a s c a d s a s d s a 1 1 1 1 1 1 1 B C D b c s b s c b d s b s d s b (G-10) s4 s a s b s c s d 1 1 1 C D s c s d 1 1 1 1 1 1 1 A C D a c s a s c a d s a s d s a 1 1 1 1 1 1 1 B C D b c s b s c b d s b s d s b (G-11) s4 s a s b s cs d 1 1 1 C D s c s d A AC 1 AC 1 AD 1 AD 1 s a a c s a a c s c a d s a a d s d B BC 1 BC 1 BD 1 BD 1 s b b c s b b c s c b d s b b d s d (G-12) 47 s4 s a s b s c s d C D 1 1 A 1 a c a d s a C D 1 B1 b c b d s b A B 1 C 1 a c b c s c A B 1 D 1 a d b d s d (G-13) s4 s a s b s cs d a 2 1 c2 d2 1 1 a b a c c d a d c d s a b2 1 c2 d2 1 a b b c c d c d b d s b c2 1 a2 b2 1 c d a b a c a b b c s c d 2 1 a2 b2 1 c d a b a d a b b d s d (G-14) 48 s4 s a s b s cs d a 2 1 c2 d2 1 1 a b a c c d a d c d s a b2 1 c2 d2 1 a b b c c d c d b d s b c2 1 a2 b2 1 c d a b a c a b b c s c d 2 1 a2 b2 1 c d a b a d a b b d s d (G-15) 49 APPENDIX H s s a 2 s As B C s a s a 2 (H-1) As Bs a 2 C s a (H-2) s As Bs a C (H-3) (H-4) s As 2 aA Bs aB C (H-5) s As 2 Bs a As B C A=0 (H-6) s Bs aB C (H-7) B 1 (H-8) C a (H-9) s s a 2 1 a s a s a 2 (H-10) 50 APPENDIX I 1 s 2 2 s 2 1 As B s2 2 s2 2 s 2 2 Cs D (I-1) s 2 As B s2 2 Cs D (I-2) s 2 The expansion can be performed using the derivation in Appendix B. 1 2 s 2 2 2 s 2 s 1 2 s 2 2 2 2 2 2 2 s 2 2 2 s 2 2 22 2 2 2 2 2 s 2 2 s 2 (I-3) 51 1 2 s 2 s 2 2s 2 1 4 4 s 2 2 2 s 2 2 2 s 2 3 2 4 4 s 2 (I-4) 1 2 s 2 2 2 s 2 s 1 s 2 2 /[ 2] s 2 3 2 /[ 2] s 2 ( 4 4 ) [s 2 2 ] 2 (I-5) The inverse Fourier transform is f (t) 1 2 2 2 cost sin t 2 2 2 2 2 1 sin t 2 2 2 2 2 cos t 2 2 2 2 2 exp t (I-6) 52 f (t) 1 2 cos t 2 2 sin t [ 4 4 ] 1 2 2 exp t 2 cos t sin t [ 4 4 ] (I-7) 53 APPENDIX J 1 1 s s 2 2 s 2 s 2 2 s s 2 1 s s 2 2 s 3 s 2 (J-1) (J-2) 1 s 3 2s s 2 2 s 3 s 2 1 s 3 s 2 2s 2 (J-3) (J-4) 0 (J-5) 0 (J-6) 0 (J-7) 0 (J-8) 1 / 2 (J-9) 1 / 2 (J-10) 1 / 2 1 / 2 1 1 2 2 s 2 s 2 2 s s 2 (J-11) The inverse Laplace transform is f (t) 1 2 t 1 3 sin( t ) (J-12) 54
© Copyright 2026 Paperzz