Correlational analysis 195 195 190 190 190 185 185 185 180 Size 195 Size Size Scatterplot 180 180 175 175 175 170 170 170 165 165 165 65 70 75 80 Weight 85 90 95 73 74 75 Weight 76 77 65 70 75 80 Weight 85 90 95 Correlational tests Nominal 1. Phi coefficient 2. Cramer’s V 3. Pearson χ2 test 4. Loglinear analysis Ordinal 1. Spearman’s Rho 2. Kendall’s Tau Interval 1. Pearson’s r Correlation coefficient + effect size Correlation coefficient Shared variance (effect size) r = 0.0 0.00 Kein Zusammenhang r = 0.1 0.01 (1%) Geringe Korrelation r = 0.2 0.04 (4%) r = 0.3 0.09 (9%) r = 0.4 0.16 (16%) r = 0.5 0.25 (25%) r = 0.6 0.36 (36%) r = 0.7 0.49 (49%) r = 0.8 0.64 (64%) r = 0.9 0.81 (81%) r = 1.0 1.00 (100%) Mittlere Korrelation Hohe Korrelation Sehr hohe Korrelation Beispiel: MLU & Age Child 1 2 3 4 5 6 7 8 9 10 11 12 Age in months 24 23 32 20 43 58 28 34 53 46 49 36 MLU 2.10 2.16 2.25 1.93 2.64 5.63 1.96 2.23 5.19 3.45 3.21 2.84 Beispiel: MLU & Age Long: There is an association between age and MLU. The r of .887 showed that 78.6% (r2) of the variation in MLU was accounted for by the variation in age. The associated probability level of 0.001 showed that such a result is unlikely to have arisen from sampling error. Short: As can be seen in the table above, there is a strong correlation between age and MLU (r = .887, p = .001). Beispiel: Typicality & Frequency Words car truck sports car motor bike train bicycle ship boat scat board space shuttle Typicality rank 1 2 3 4 5 6 7 8 9 10 Frequency rank 1 2 6 5 3 4 8 7 9 10 Beispiel: Typicality & Frequency Kendall’s tau ( = .733, p = .003) Spearman’s rho (rs = .879, p = .001) Partial correlation Phoneme & Silben Phoneme & Häufigkeit Silben & Häufigkeit r = .898, p = .001 r = .795, p = .006 r = .677, p = .031 Phoneme & Häufigkeit (Silben Konstant) r = .578, p = .103 Nominal Daten Es gibt eine signifikante Korrelation zwischen Geschlecht (Boys vs. Girls) und der Präferenz für ein bestimmtes Spielzeug (mechanisch vs. nichtmechanisch) (χ2 = 49,09, df = 2, p = .001). Phi-Koeffizient Cramer’s = .70, p < .001 V = .70, p < .001 Regression Correlation - Regression Correlational analysis gives us a measure that represents how closely the data points are associated. Regression analysis measures the effect of the predictor variable x on the criterion y. – How much does y change if you change x. A correlational analysis is purely descriptive, whereas a regression analysis allows us to make predictions. Types of regression analysis Linear regression Predictor variable 1 interval Criterion (target) variable 1 interval Types of regression analysis Linear regression Multiple regression Predictor variable 1 interval Criterion (target) variable 1 interval 2+ (some of the 1 interval variables can be categorical) Types of regression analysis Linear regression Multiple regression Predictor variable Criterion (target) variable 1 interval 1 interval 2+ (some of the 1 interval variables can be categorical) Logistic regression 1+ 1 categorical Discriminant analysis 1+ 1 categorical Line-of-best-fit 6,00 MLU 5,00 4,00 3,00 R-Quadrat linear = 0,786 2,00 20,00 30,00 40,00 Age 50,00 60,00 Linear Regression y = bx + a y x b a = = = = variable to be predicted given value on the variable x value of the slope of the line the intercept (or constant), which is the place where the line-of-best-fit intercepts the y-axis. Linear Regression Given a score of 20 on the x-axis, a slope of b = 2, and an interception point of a = 5, what is the predicted score? y = (2 20) + 5 = 45 Beispiel: MLU & Age Child Age in months MLU 1 2 3 4 5 6 7 8 9 10 11 12 24 23 32 20 43 58 28 34 53 46 49 36 2.10 2.16 2.25 1.93 2.64 5.63 1.96 2.23 5.19 3.45 3.21 2.84 How much does MLU increase with growing age? Linear Regression There is s strong association between age and MLU (R = 0.887). Specifically, it was found that the children’s MLU increases by an average of .088 words each months (t = 6,069, p < 0.001), which amounts to about a word a year. Since the F-value (36,838, df = 1) is highly significant (p < 001), these results are unlikely to have arisen from sample error. Multiple Regression Several predictor variables influence the criterion. Plane-pf-best-fit 1. Simultaneous multiple regression 2. Stepwise multiple regression Simultaneous Multiple Regression Eine Universität möchte wissen, welche Faktoren am besten dazu geeignet sind, den Lernerfolg ihrer Studenten vorherzusagen. Als Indikator für den Wissensstand der Studenten gilt die Punktzahl in einer zentralen Abschlussklausur. Als mögliche Faktoren werden in Betracht gezogen: (1) Punktzahl beim Eingangstest, (2) Alter, (3) IQ Test, (4) Punktzahl bei einem wissenschaftlichen Projekt. Simultaneous Multiple Regression Predictor entrance exam age IQ Scientific project Criterion final exam There is s strong association between the predictor variables and the result of the final exam (Multiple R = 0.875; F = 22,783, df = 4, p = .001 ). Together they account for 73% of the variation in the exam succes. If we look at the four predictor variables individually we find that the result of the entrance exam (B = .576, t = 5.431, p = .001) and the IQ score (B = .447, t = 4.606, p = .001) make the strongest contributions (i.e. they are the best predictors). The predictive value of age (B = .099, t = 5.431, p = .327 and the score on the scientific project is not significant (B = 0.141, t = 1,417, p = 0.168.). Stepwise Multiple Regression In stepwise regression you begin with one independent variable and add one by one. The order of addition is automatically determined by the effect of the independent variable on the dependent variable. Assumptions Multiple Regression 1. At least 15 cases 2. Interval data 3. Linear relationship between predictor variables and criterion. 4. No outliers (or delete them) 5. Predictor variables should be independent of each other Logistic Regression In Linguistics, you often use logistic regression: Multiple factors determine the choice of linguistic alternates: 1. look up the number - look the number up 2. that-complement clauses - zero-complement clause 3. intial adverbial clause - final adverbial clause 4. aspirate /t/ - unaspirated /t/ - glottal stop - flap
© Copyright 2026 Paperzz