ECON6021 Microeconomic Analysis Consumption Theory II Topics covered 1. 2. 3. 4. Price Change Price Elasticities Income Elasticities Market Demand Price effect y I Py Price consumption curve (PCC) Or Price expansion path (PEP) B A I Px Px A I P'x x Ordinary (Marshallian) Demand function B x x( Px , Py , I ) x Price Effects Y I Py I T Py J K MB A S Q x0 xsx1 I Px I T Px I Px' X • Initial consumption: A • Price decreases from Px to Px’ • Real income—Hick’s definition: an initial level of utility • x0 to xs (or A to S) is the sub. effect • xs to x1 (or S to B) is the income effect Price Effects • Price Effects= substitution effect + Income effect • Substitution Effect a.k.a (also known as) pure price effect: a change in relative price while keeping utility constant For income effects, S is the reference point. M: no income effect M-Q: X is normal J-M: X is inferior X 0 I X 0 I X 0 I A is the reference point for the analysis of combined effect of income and substitution effect. K-Q: J-K: Giffen gd. Giffen gd inferior gd. X 0 Px X 0 Px Price Elasticities Price and Expenditure Elasticities Own Price Elasticity x Px dx / x exx Px x dPx / Px exx 1 Elastic demand exx 1 Unitary demand exx 1 Inelastic demand Price Elasticity of Expenditure e( px x ), px ( Px x ) Px Px Px x ( Px x ) 1 Px x 1 Px x x Px x Px Px x Px 1 1 exx 1 exx Px x e( px x ), px exx ( 1 exx ) Px Px >1 Elastic 0 Px x Px x <1 Inelastic 0 Px x Px x =1 Unitary 0 No change No change An Example: Linear demand p A Bx A P x B B dx 1 dP B dx P 1 A Bx A 1 dP x B x Bx if A exx 1 1 if Bx 0 if x0 x A / 2B x A/ B An Example: Linear Demand xP Ax Bx 2 d ( xP) MR A 2 Bx dx P Review: Linear Demand Q 100 P or P 100 Q ex , Px ex , Px (demand) (inverse demand) ex , Px 1 Q P P P ( 1) P Q Q 100 P P 1 100 P 0 when P 100 Q when P 50 when P 0 ex , Px decreases from to 0 as P decreases from 100 to 0. TR TR Q * P (100-Q )*Q -[Q 100Q ] (Q 50) 2 2500 dTR 100 2Q 0 when Q 50. dQ TR reaches a max when ex ,Px 1 Q Income Change AOG AOG IEP (Income Expansion Path) IEP X X x is normal x 0 (meaning that Px , Py fixed) I where x (Px , Py , I ) x has no income effect x 0 I Px fixed variable x( Px , Py , I ) Demand IEP x variable x x is inferior x 0 I x( Px , Py , I ) Engel Curve fixed I Income Elasticities Income Elasticity x I x / x exI I x I / I exI 1 superior good (luxury) 0 exI 1 normal, necessity exI 0 no income effect exI 0 inferior good e( px x ), I e Px x I , I Px x expenditure on x Px x sx I budget share for x ( Px x ) I x I Px ex , I I Px x I Px x Px x / I x / I I2 I Px I Px x / I I Px x 2 I x / I x I / I I x I 1 2 I x I x exI 1 eS x , I 0 exI 1 0 0 if exI>1 if exI=1 If exI<1 Engel Aggregation (Adding-up condition) I Px x Py y dI Px dx Py dy dx dy 1 Px Py dI dI dx x I dy y I Px Py dI x I dI y I Px x dx I Py y dy I I dI x I dI y s x exI s y e yI Aggregate Income elasticity=1 Consider an income change… Y X A A-B B B-C C C-D D D-E B C D C’ I1 I0 E Inferior No income eff Normal only Normal only Superior Superior Superior Y superior superior superior normal only normal only no income effect inferior From C' C X budget share of x does not change, eSx I 0 exI 1 0 exI 1 Cobb-Douglas Utility: U=xy max U xy x, y subject to Px x Py y I x I I ,y . 2 Px 2 Py ex , Px x Px I Px I Px 1 2 Px x 2 Px x Px I ex , Py x Py 0 Py I x I 1. I x ex , I 1 0. Check ex , I eS x , I Px x I /2 1 I I 2 S x I 0. I S x Sx eS x , I Homogenous function • Homogenous function of degree k – If there exists a constant k so that for all m>0 and for all a, b F (ma, mb) m F (a, b) (1) k Then, we say F(.) is homogenous of degree k. Euler Theorem • Euler Theorem – If F(a,b) is homogenous of degree k, then we have F F a b kF a b • Proof of Euler Theorem. • Differentiate equation (1) with respect to m & then set m=1 Corollary of Euler Theorem Since demand x =F ( Px , P y , I ) is homo. of degree 0, F F F Px Py I 0 Px Py I F Px F Py F I 0 Px F Py F I F exx exy exI 0 Lump Sum Principle AOG Initial conditions : I 0 , Px , Py I Py hence x0 , y0 an excise tax (ad valorem) t on x is levied I 0 ( Px t ) x Py y A y0 y1 y2 B I 0 tx1 Px x1 Py y1 At B, S I0 Px x1 x2 x0 x Lump Sum Principle Lump-sum tax: T dollars so that T tx1 I 0 T Px x Py y Hence, Px x Py y Px x1 Py y a value Chosen dependent on IC Note that the new consumption at (S) is in a higher IC. In order to get a fixed amount of taxation, lump-sum tax is less harmless to consumers/citizens. Lump Sum Principle AOG I0 0 A X The amount of A is a free gift from government. A sum of money equivalent to the value of gift is even better. Market Demand Market Demand x x( Px , Py , I ) Individual demand Assume 2 agents (1 and 2) I1 x1 2 Px I1 Px 2 x1 inverse demand I2 x2 2 Px I Py 2 x2 inverse demand x market I1 I2 I1 I 2 x1 x2 2 Px 2 Px 2 Px Market Demand 100 P P 100 x A x A 0 100 P 12.5 P 50 4 xB xB 4 0 5 0 12.5 100 112.5 if P 100 o.w. if p 50 o.w. if P 50 112.5 5P / 4 x x A xB 100 P if 50 P 100 0 o.w. The End
© Copyright 2026 Paperzz