Interpolation Procedures for the Determination of Losses and Energy Efficiency of Electrical Machines Univ.-Prof. Dr.-Ing. Martin Doppelbauer Karlsruhe Institute of Technology (KIT) Institute of Electrical Engineering (ETI) Germany Chairman of IEC TC2 WG31 Univ.-Prof. Dr.-Ing. Martin Doppelbauer Interpolation Procedure Motor Losses September 2015 Efficiency Contour Plot Over Speed And Torque Efficiency Contour 1 0,9 0,8 0,9000-0,9500 0,7 0,6 0,8500-0,9000 0,8000-0,8500 Torque 0,7500-0,8000 0,5 0,7000-0,7500 0,6500-0,7000 0,4 0,3 0,6000-0,6500 0,5500-0,6000 0,5000-0,5500 0,2 0,1 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Speed Univ.-Prof. Dr.-Ing. Martin Doppelbauer Interpolation Procedure Motor Losses September 2015 Determination of Relative (Related) Losses • Losses are more meaningful than efficiency • Losses have a smoother behavior than efficiency and are better suited for interpolation • Losses, power, speed, frequency and torque will always be regarded as relative to the nominal values: T=1 is rated torque n=1 is rated speed f=1 is rated frequency η=1 is 100% efficiency P=1 is rated output (mechanical) power • Operation of machine limited to constant flux (U/f = const), i.e. T = 0…1, f = 0…1 • No overload operation (T > 1) Univ.-Prof. Dr.-Ing. Martin Doppelbauer Interpolation Procedure Motor Losses September 2015 Development of Interpolation Formula Based on Equivalent Circuit Calculations Stator and rotor winding losses (PLS + PLR) Iron losses (PLfe) Additional load losses (PLL) Friction and windage losses (PLfw) Additional harmonic losses (PLHL) Simple, physical/mathematical interpolation formula using 7 parameters: Univ.-Prof. Dr.-Ing. Martin Doppelbauer Interpolation Procedure Motor Losses September 2015 Efficiency Determining the 7 Parameters From 7Contour Operating Points 1 0,9 90% speed to avoid loss of flux at 100% speed due to voltage 0,9000-0,9500 limitations of the frequency 0,8500-0,9000 converter! 0,8 0,7 0,8000-0,8500 0,6 Torque 0,7500-0,8000 0,5 0,7000-0,7500 0,6500-0,7000 0,4 0,6000-0,6500 0,5500-0,6000 0,3 0,5000-0,5500 0,2 0,1 0 0 0,1 0,2 0,3 0,4 0,5 Speed Univ.-Prof. Dr.-Ing. Martin Doppelbauer 0,6 0,7 0,8 0,9 1 P1 P2 P3 P4 P5 P6 P7 f 0.9 0.5 0.9 0.5 0.25 0.5 0.25 Interpolation Procedure Motor Losses T 1 1 0.5 0.5 1 0.25 0.25 P 0.9 0.5 0.45 0.25 0.25 0.125 0.0625 Comment Also included Also included Also included Also included in in in in IEC 61800-9-2 IEC 61800 -9-2 IEC 61800 -9-2 IEC 61800 -9-2 Also included in IEC 61800 -9-2 September 2015 Determination of the 7 Parameters • Analytically from measurement of losses at the 7 standardized operating points • Analytically from measurement of losses at the 7 alternate operating points (measurements at 90% speed replace by measurements at 100% speed) • Numerically from measurement of losses at 16 operating points (search for least overall error – Interpolation stability index QISI) • Any other method chosen by the manufacturer Regardless of how the interpolation parameters were determined: The application (the formula) for the user is always the same ! Univ.-Prof. Dr.-Ing. Martin Doppelbauer Interpolation Procedure Motor Losses September 2015 Analytical Determination of 7 Parameters from the 7 Operating Points Solving a system of linear equations: Univ.-Prof. Dr.-Ing. Martin Doppelbauer Interpolation Procedure Motor Losses September 2015 Analytical Determination of 7 Parameters from the 7 Operating Points Losses at: P1 = (90,100) P2 = (50,100) P3 = (90,50) P4 = (50,50) P5 = (25,100) P6 = (50,25) P7 = (25,25) (speed, torque) Px = 0...1 Univ.-Prof. Dr.-Ing. Martin Doppelbauer Interpolation Procedure Motor Losses September 2015 Analytical Determination of 7 Parameters from 7 Alternate Operating Points Losses at: P1* = (100,100) P2 = (50,100) P3* = (100,50) P4 = (50,50) P5 = (25,100) P6 = (50,25) P7 = (25,25) (speed, torque) Px = 0...1 Univ.-Prof. Dr.-Ing. Martin Doppelbauer Interpolation Procedure Motor Losses September 2015 Interpolation Stability Index – Based on 16 Measured Operating Points QISI is the standard deviation of the interpolated values from the real values across all 16 points, i.e. the average interpolation error: QISI <= 5 % QSI <= 10% QISI > 20% very good Acceptable not usable The determination of the 7 parameters (A…G) is performed by a numerical search for the minimum QISI. An EXCEL-Sheet with a VBA algorithm will be provided through IEC. Alternatively, EXCEL’s built-in Solver (optional installation) or MATLAB can be used. Univ.-Prof. Dr.-Ing. Martin Doppelbauer Interpolation Procedure Motor Losses September 2015 Proposed Testing Points – Numerical Determination of 7 Parameters = 16 Points Efficiency Contour 1 0,9 0,8 0,9000-0,9500 0,7 0,6 0,8500-0,9000 0,8000-0,8500 Torque 0,7500-0,8000 0,5 0,7000-0,7500 0,6500-0,7000 0,4 0,3 0,6000-0,6500 0,5500-0,6000 0,5000-0,5500 0,2 0,1 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Speed Univ.-Prof. Dr.-Ing. Martin Doppelbauer Interpolation Procedure Motor Losses September 2015 A Practical Example Measurement results of a 37 kW, 4-pole induction machine: Torque 1 0,75 0,5 0,25 0,7950 0,8183 0,8221 0,7678 0,25 0,8709 0,8786 0,8725 0,8250 0,5 0,9009 0,9047 0,8967 0,8508 0,75 0,9131 0,9193 0,9126 0,8729 1 Speed From the grey shaded operating points the 7 interpolation coefficients were determined to be: A = 0,00511 B = 0,04368 C = -0,01829 D = -0,00858 E = 0,02300 F = 0,00487 G = 0,04540 Univ.-Prof. Dr.-Ing. Martin Doppelbauer Interpolation Procedure Motor Losses September 2015 A Practical Example Measurement results: Torque 1 0,75 0,5 0,25 0,7950 0,8183 0,8221 0,7678 0,25 0,8709 0,8786 0,8725 0,8250 0,5 0,9009 0,9047 0,8967 0,8508 0,75 0,9131 0,9193 0,9126 0,8729 1 Speed Compared to the interpolated efficiency values (analytically from 7 points): Torque 1 0,75 0,5 0,25 0,7950 0,8111 0,8144 0,7678 0,25 0,8709 0,8774 0,8725 0,8250 0,5 0,8989 0,9030 0,8972 0,8541 0,75 0,9131 0,9171 0,9126 0,8758 1 Speed QISI = 2,31 % Compared to the interpolated efficiency values (numerically from 16 points): Torque 1 0,75 0,5 0,25 0,7952 0,8146 0,8193 0,7665 0,25 Univ.-Prof. Dr.-Ing. Martin 0,8708 0,8786 0,8733 0,8199 0,5 Doppelbauer 0,8988 0,9033 0,8966 0,8478 0,75 0,9130 0,9171 0,9114 0,8693 1 Speed Interpolation Procedure Motor Losses QISI = 1,92 % September 2015 A Practical Example Losses over Speed - analy cal 7 points Losses over Speed - XSOLVE 16 points 0,100 0,120 0,090 0,100 0,080 100% Torque 100% Torque 0,080 75% Torque 0,060 50% Torque 0,050 25% Torque 0,040 100% Interpola on 0,030 75% Interpola on Losses Losses [%] 0,070 75% Torque 50% Torque 0,060 25% Torque Datenreihe6 0,040 Datenreihe7 50% Interpola on 0,020 Datenreihe8 0,020 25% Interpola on 0,010 0,000 Datenreihe9 0,000 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 Speed [%] 0,5 0,6 0,7 0,8 0,9 1 Speed Losses over Torque - analy cal 7 points Losses over Torque - XSOLVE 16 points 0,100 0,120 0,090 0,100 0,080 100% Speed 100% Speed 0,080 75% Speed 0,060 50% Speed 0,050 25% Speed 0,040 100% Interpola on 0,030 75% Interpola on Losses Losses [%] 0,070 75% Speed 50% Speed 0,060 25% Speed Datenreihe5 0,040 Datenreihe6 50% Interpola on 0,020 25% Interpola on 0,010 0,000 Datenreihe7 0,020 Datenreihe8 0,000 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 Torque [%] 0,4 0,5 0,6 0,7 0,8 0,9 1 Torque Losses are linearly depending on speed – typical for ASM Univ.-Prof. Dr.-Ing. Martin Doppelbauer Interpolation Procedure Motor Losses September 2015 Another example : PM-motor Losses over Torque - XSOLVE 7 points 0,060 0,050 100% Speed Losses 0,040 75% Speed 50% Speed 0,030 25% Speed Datenreihe5 0,020 Datenreihe6 Datenreihe7 0,010 Datenreihe8 0,000 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Torque Losses are rapidly increasing at high speeds – typical for PMSM Univ.-Prof. Dr.-Ing. Martin Doppelbauer Interpolation Procedure Motor Losses September 2015 Mass Testing of the Interpolation Formula A total of 128 motors were analyzed: • Data from Leroy Somer, Quebec Hydro, KSB, Siemens, Grundfos, WILO • Induction machines (ASM), Permanent Magnet SM, Reluctance SM • IE2, IE3, IE4 • 0,12 … 1000 kW • 2-, 4-, and 6-pole Interpolation procedures: • Proposed interpolation formula – analytically determined parameters (7 points) • Proposed interpolation formula – numerically determined parameters (16 points) • EN 50598-2 linear interpolation (G.2.3) (8 points) 7-coeff analytical 7 points 7-coeff numerical 16 points EN 505982 linear interpol. Average error all 128 motors 1,7 % 1,8 % 8,6 % Max error all 128 motors 7,8 % 10,8 % 20,6 % Average error 76 IE2 ASM 0,4 % 0,9 % 7,9 % Average error 32 SynREL 3,2 % 2,7 % 8,7 % Average error 9 PMSM 4,3 % 4,4 % 11,4 % Univ.-Prof. Dr.-Ing. Martin Doppelbauer Interpolation Procedure Motor Losses September 2015
© Copyright 2026 Paperzz