Skeletonized Wave-equation Inversion for Q Gaurav Dutta and Gerard T. Schuster* Department of Earth Science & Engineering King Abdullah University of Science and Technology October 18, 2016 Outline Predicted Observed • Motivation • Theory of WQ • Numerical Examples Synthetic Data Examples Field Data Example • Limitations • Conclusions 𝑓𝑜𝑏𝑠 𝑓𝑐𝑎𝑙𝑐 • Motivation Outline • Theory of WQ • Numerical Examples Synthetic Data Examples Field Data Example • Limitations • Conclusions Motivation for Q Compensation Offshore Brunei (Gamar et al., 2015) Motivation for Q compensation North Sea (Valenciano and Chemingui, 2012) Motivation for Q Compensation Offshore Brazil (Zhou et al., 2011) Motivation for Q Compensation Problem: FWI Q(x,y,z) not robust Solution: Skeletonized Inversion for Q Δf Amp. Spectrum Time Predicted Observed Predicted Observed e= 1 𝜖= 2 𝑠 Δ𝑓 𝑟 Frequency (Hz) Y. Quan & Jerry Harris, 1997, Seismic attenuation tomography using the frequency shift method 2 • Motivation Outline • Theory of WQ • Numerical Examples Synthetic Data Examples Field Data Example • Limitations • Conclusions FWI vs Skeletal Inversion True Q Model Q Observed Traces vs Predicted Traces 200 d(t) time 2 Z (km) e=||dpred - dobs ||2 vs Model 80 FWI gets stuck in local minima e 4 40 1 2 X (km) 3 local minima Model FWI vs Skeletal Inversion True Q Model Observed vs Predicted Spectra Q Skeletal data = Peak Frequency 200 D(f) 2 Z (km) fpred 80 fobs Frequency (Hz) e=||fpred - fobs ||2 vs Model 4 e Skeletal inversion = rapid convergence global minima 40 1 2 X (km) 3 Model Similarities with Wave-equation Traveltime Inversion Properties Wave-equation traveltime tomography (Luo and Schuster, Wave-equation Q tomography (Dutta and Schuster, 2016) 1991; Woodward 1992) Misfit function: 1 𝜖= 2 Δ𝜏 𝒙𝑟 , 𝒙𝑠 𝑠 2 𝑟 1 𝜖= 2 Δ𝑓 𝒙𝑟 , 𝒙𝑠 𝑠 𝑟 Predicted Observed Δ𝜏 Gradient: 𝜕𝜖 =− 𝜕𝑐(𝒙) 𝑠 𝑟 𝜕Δ𝜏 Δ𝜏(𝒙𝑟 , 𝒙𝑠 ) 𝜕𝑐 𝒙 2 Δf 𝜕𝜖 =− 𝜕𝑄(𝒙) 𝑠 𝑟 𝜕Δ𝑓 Δ𝑓(𝒙𝑟 , 𝒙𝑠 ) 𝜕𝑄 𝒙 Wave-equation Q Tomography There are 3 steps in WQ: 1 𝜖= 2 1) Misfit function 𝜖: 𝜕𝜖 =− 𝜕𝑄(𝒙) 𝑠 𝑟 𝜕Δ𝑓 Δ𝑓(𝒙𝑟 , 𝒙𝑠 ) 𝜕𝑄 𝒙 3) Gradient: = Q(k) 𝑠 2 𝑟 Δ𝑓Δ𝑓 = 𝑓𝑐𝑎𝑙𝑐 (𝒙𝑟 , 𝒙𝑠 ) − 𝑓𝑜𝑏𝑠 (𝒙𝒓 , 𝒙𝑠 ) 2) Frechet Derivative : df/dQ = Q(k+1) Δ𝑓 𝒙𝑟 , 𝒙𝑠 - We know dP/dQ from wave equation 𝜕𝜖 a . 𝜕𝑄 Smear frequency-shift residuals along wavepaths Viscoacoustic Wave Equation SLS Model Time-domain visco-acoustic wave equation: 𝜕𝑃 𝑃 = Pressure + 𝐾 𝜏 + 1 𝛻 ⋅ 𝒗 + 𝑟𝑝 = 𝑓(𝒙𝑠 , 𝑡) 𝒗 = Particle velocity 𝜕𝑡 𝑟𝑝 = Memory variable 𝜕𝒗 1 𝜏𝜖 , 𝜏𝜎 = Strain/Stress + 𝛻𝑃 = 0 𝜕𝑡 𝜌 relaxation times 1 𝜏𝜎 = 𝜔 1 𝜏𝜖 = 1 1+ 2 −𝑄 𝑄 1 1+ 2 +𝑄 𝑄 𝜔 𝑓 = Point-source function 𝜕𝑟𝑝 1 + 𝑟𝑝 + 𝜏𝐾 𝛻 ⋅ 𝒗 𝜕𝑡 𝜏𝜎 =0 𝜏𝜖 2 1 1 𝜏 = −1 = + 1+ 2 𝜏𝜎 𝑄 𝑄 𝑄 • Motivation Outline • Theory of WQ • Numerical Examples Synthetic Data Examples Field Data Example • Limitations • Conclusions Synthetic Example True Q Model Q Predicted Observed 200 2 Z (km) 𝑓𝑜𝑏𝑠 𝑓𝑐𝑎𝑙𝑐 80 • • • 4 40 1 2 X (km) 3 Acquisition 60 sources 200 receivers 𝑓𝑝𝑒𝑎𝑘 = 15 Hz Δ𝑓 Predicted Observed Synthetic Example True Q Model 𝑓𝑜𝑏𝑠 WQ Tomogram Q 𝑓𝑐𝑎𝑙 Q 200 200 80 80 40 40 Z (km) 2 4 1 2 X (km) 3 1 2 X (km) 3 Observed Predicted Synthetic Example True Q Model Q 10000 Z (km) 0.5 1.5 WQ Tomogram Q 20 10000 Z (km) 0.5 1.5 4 20 X (km) 8 12 Standard RTM Z (km) 1 2 4 X (km) 8 12 Standard LSRTM Z (km) 1 2 4 X (km) 8 12 Q LSRTM Z (km) 1 2 4 X (km) 8 12 Standard RTM Z (km) 1 2 4 X (km) 8 12 • Motivation Outline • Theory of WQ • Numerical Examples Synthetic Data Examples Field Data Example • Limitations • Conclusions Crosswell Field Data 183 m 9m 9m 3m 305 m 3m 293 m Reflector 96 receivers 98 sources Data Sampling: ¼ ms Total Record Length: 0.375 s Crosswell Field Data Velocity Tomogram Q Tomogram km/s Q 70 2.1 60 100 Z (m) 1.9 50 200 1.7 40 1.5 300 30 50 100 X (m) 150 50 100 X (m) 150 Predicted vs Observed Peak Frequencies Hz 12 Source Index 50 100 8 150 4 200 100 200 Receiver Index 300 400 Crosswell Field Data Standard Migration Q-PSDM Z (m) 100 200 300 50 100 X (m) 150 50 100 X (m) 150 Crosswell Field Data Standard Migration Q-PSDM Z (m) 100 200 300 50 100 X (m) 150 50 100 X (m) 150 Outline • Motivation • Theory of WQ • Numerical Examples Synthetic Data Examples Field Data Example • Limitations • Conclusions Limitations • Low-Intermediate Q resolution • Velocity-Q ambiguity: Q time delays • Sequential Q and V inversion, or possibly simultaneous Q+V inversion • Motivation Outline • Theory of WQ • Numerical Examples Synthetic Data Examples Field Data Example • Limitations • Conclusions Conclusions • A novel wave-equation Q tomography method is presented. Predicted Observed 1 𝜖= 2 Δ𝑓 𝒙𝑟 , 𝒙𝑠 𝑠 2 𝑟 Δ𝑓 = 𝑓𝑐𝑎𝑙𝑐 (𝒙𝑟 , 𝒙𝑠 ) − 𝑓𝑜𝑏𝑠 (𝒙𝒓 , 𝒙𝑠 ) 𝑓𝑜𝑏𝑠 𝑓𝑐𝑎𝑙𝑐 • Gradient: ≈ ∫ 𝑑𝑡 𝛻 ⋅ 𝒗(𝒙, 𝑡; 𝒙𝑠 ) 𝑔 𝒙𝑟 , −𝑡; 𝒙, 0 ∗ 𝑃 𝒙𝑟 , 𝑡; 𝒙𝑠 𝑠 𝑟 Source 𝑜𝑏𝑠 Δ𝑓(𝒙𝑟 , 𝒙𝑠 ) Backpropagated weighted residual ∫ 𝛼 𝑑𝑙 = Δ𝑓 Conclusions • Inverted Q tomograms ⇒ Improvements in imaging. Standard Migration Z (km) 1 2 4 X (km) 8 12 Conclusions • Inverted Q tomograms ⇒ Improvements in imaging. Q-PSDM Z (km) 1 2 4 X (km) 8 12 • Conclusions Inverted Q tomograms ⇒ Improvements in imaging. Standard Migration Q-PSDM Z (m) 100 200 300 50 100 X (m) 150 50 100 X (m) 150 Limitations • Low-Intermediate Q resolution • Velocity-Q ambiguity • Sequential Q and V inversion, or possibly simultaneous Q+V inversion Acknowledgements • SEG for providing this platform. • Sponsors of the CSIM consortium. • Exxon for the Friendswood data. • KAUST Supercomputing Laboratory and IT Research Computing Group. Motivation for Q Compensation Problem: Q distorts amplitude and phase of propagating waves. Q=1000 Q=40 Q=20 Z (km) 2 4 4 X (km) 8 4 X (km) 8 𝑓𝑝𝑒𝑎𝑘 = 20 Hz 4 X (km) 8 Motivation for Q Compensation Problem: Q distorts amplitude and phase of propagating waves. Q=1000 Q=40 Q=20 Z (km) 2 4 4 X (km) 8 4 X (km) 8 𝑓𝑝𝑒𝑎𝑘 = 20 Hz 4 X (km) 8 Motivation for Q Compensation Problem: Q distorts amplitude and phase of propagating waves. Q=1000 Q=40 Q=20 Z (km) 2 4 4 X (km) 8 4 X (km) 8 𝑓𝑝𝑒𝑎𝑘 = 20 Hz 4 X (km) 8
© Copyright 2026 Paperzz