L8 Optimal Design concepts pt D
•
•
•
•
•
•
•
Homework
Review
Equality Constrained MVO
LaGrange Function
Necessary Condition EC-MVO
Example
Summary
1
MV Optimization- UNCONSTRAINED
For x* to be a local minimum: f f (x ) f (x*) 0
1 T
T
f f ( x*)d d H d
2
f T (x*) 0
1rst order
Necessary
Condition
dT H d 0
2nd order
Sufficient
Condition
i.e. H(x*) must be positive definite
2
MV Optimization- CONSTRAINED
For x* to be a local minimum:
MINIMIZE :
f (x )
Subject To :
h j (x )= 0
j = 1 p
(U )
(L )
i = 1 n
xi xi xi
3
LaGrange Function
If we let x* be the minimum f(x*) in the feasible region:
All x* satisfy the equality constraints (i.e. hj =0)
Let’s create the LaGrange Function by augmenting the
objective function with “0’s”
Using parameters, known as LaGrange multipliers, and the
equality constraints
Lx, ν f ( x ) υ1h1 ( x ) υ2 h2 ( x ) ... υ p h p ( x )
or in summation notation
p
Lx, ν f ( x ) υi hi ( x )
i 1
and using vectors
Lx, ν f ( x ) νT h( x )
" υ" upsilon scalar
" ν" nu vector
4
Necessary Condition
Necessary condition for a stationary point
Given f(x), one equality constraint, and n=2
Lx, ν 0
{ f ( x ) υ1h1 ( x )} 0
L f
h ( x )
υ1 1
0
x1 x1
x1
L f
h ( x )
υ1 1
0
x2 x2
x2
L
h1 ( x ) 0
υ1
Lx, ν 0
f
h1 ( x )
υ1
0
x1
x1
f
h1 ( x )
υ1
0
x2
x2
h1 ( x ) 0
5
2D Example
Minimize f ( x1 , x2 ) ( x1 1.5)2 ( x2 1.5)2
subject to : h(( x1 , x2 ) x1 x2 2 0
6
Example cont’d
L(x, υ) f (x ) υh(x )
L(x, υ) ( x1 1.5)2 ( x2 1.5)2 υ( x1 x2 2)
Lx, ν 0
f
h ( x )
υ
2( x1 1.5) υ 0
x1
x1
f
h ( x )
υ
2( x2 1.5) υ 0
x2
x2
h1 ( x ) x1 x2 2 0
system of 3 eqns and 3unkns
2( x1 1.5) υ 0
2( x2 1.5) υ 0
x1 x2 2 0
simultaneo us solution gives :
υ 1
x1* 1
x2* 1
7
Example cont’d
optimal solution
υ 1 x1* 1 x2* 1
optimal value
f (1,1) (1 - 1.5)2 (1 1.5)2 0.5
2( x1 1.5) 1
f x *
2( x2 1.5) 1
1
hx *
1
8
Geometric meaning?
1
f x *
1
1
hx *
1
f x * υhx * 0
f x * υhx *
9
Stationary Points
Lx, ν 0
Points that satisfy the necessary
condition of the LaGrange Function are
stationary points
Also called “Karush-Kuhn-Tucker” or
KKT points
10
Lagrange Multiplier Method
1. Both f(x) and all hj(x) are differentiable
2. x* must be a regular point:
x* is feasible (i.e. satisfies all hj(x)
Gradient vectors of hj(x) are linearly
independent (not parallel, otherwise
no unique solution)
3. LaGrange multipliers can be +, - or 0.
Can multiply h(x) by -1, feasible region
is the same.
11
Summary
•
•
•
•
LaGrange Function L(x,u)
Necessary Conditions for EC-MVO
Example
Geometric meaning of multiplier
12
© Copyright 2026 Paperzz