ENM 212 Integer Programming and Network Models-HW 1 Solutions 1) a) NWC Final Allocation Table is : S1 S2 S3 S4 S5 Demand D1 13 (3) 14 3 18 30 3 D2 10 (2) 13 (3) 0 9 24 5 D3 22 16 (3) M(1) 19 34 4 D4 29 21 11 (5) 23 36 5 D5 18 M 6 (1) 11 (4) 28 (1) 6 Ddummy 0 0 0 0 0 (2) 2 Supply 5 6 7 4 3 M=10000 The minimum total transportation cost π§πππΆ =13×3+10×2+13×3+16×3+10000×1+11×5+6×1+11×4+28×1+0×2=10279=13×3+10×2+13×3+16×3 +10000×1+11×5+6×1+11×4+28×1+0×2=279+M Here, the number of allocated cells = 10 is equal to m + n - 1 = 5 + 6 - 1 = 10 b) VAM Final Allocation Table is D1 D2 D3 D4 D5 Ddumm y Suppl y Row Penalty S1 13 10(5 ) 22 29 18 0 5 10 | 3 | 8 | 8 | -- | --| -- | -| S2 14 13 16(4 ) 21(1 ) M(1) 0 6 13 | 1 | 3 | 3 | 5 | 5 | 5 | 5 | S3 3(3 ) 0 M 11(4 ) 6 0 7 0 | 3 | 6 | -- | -- | -- | -- |-- | S4 18 9 19 23 11(4 ) 0 4 9 | 2 | 2 | 2 | 8 | -- | -- | -| S5 30 24 34 36 28(1 ) 0(2) 3 24 | 4 | 4 | 4 | 6 | 6 | -- | -- | Demand 3 5 4 5 6 2 Col Penalty 10 10 ------ 9 9 9 1 ---- 3 3 3 3 3 18 16 10 10 10 2 2 15 21 5 5 5 7 17 M M 0 ------- -- -- 16 21 -- -- The minimum total transportation cost π§ππππππ‘π¦ =10×5+16×4+21×1+M×1+3×3+11×4+11×4+28×1+0×2=260+M Here, the number of allocated cells = 9, which is one less than to m + n - 1 = 5 + 6 - 1 = 10This solution is degenerate. OR Final Table D1 D2 D3 D4 D5 Ddum my Suppl y S1 13 10(3 ) 22 29 18(2 ) 0 5 10 | 3 | 3 | 3 | 3| 3 | 3 | 3| S2 14(1 ) 13(1 ) 16(4) 21 M 0 6 13 | 1 | 1 | 1 | 1 | 1 | 1 | 1| S3 3(2) 0 1000 0 11(5 ) 6 0 7 0 | 3 | 3 | -- | -- | -- | -- | -- | S4 18 9 19 23 11(4 ) 0 4 9 | 2 | 2 | 2 | -- | -- | -| -- | S5 30 24(1 ) 34 36 28 0(2) 3 24 | 4 | 4 | 4 | 4 | 6 | 6 | -- | Demand 3 5 4 5 6 2 10 10 10 ------ 9 9 9 1 3 3 3 3 3 3 3 3 6 6 --- 10 10 ------- 5 5 5 7 10 ---- 0 -------- Col Penalty Row Penalty Here, the number of allocated cells = 10, which is equal to m + n - 1 = 5 + 6 - 1 = 10. π§ππππππ‘π¦ =3*10+18*2+14*1+13*1+16*4+3*2+11*5+11*4+24*1+0*2=286 Interpretition: π§πππΆ > π§ππππππ‘π¦ VAM(penalty) gave better solution than NWC. 2) MODI: Start with a BFS. ( Be careful : m + n β 1 cells must be allocated before each step. ) Final optimal solution : D1 D2 D3 D4 D5 Ddummy Supply S1 13 (0) 10 (5) 22 29 18 0 5 S2 14 13 16 (4) 21 (2) 10000 0 6 S3 3 (3) 0 10000 11 (3) 6 (1) 0 7 S4 18 9 19 23 11 (4) 0 4 S5 30 24 34 36 28 (1) 0 (2) 3 Demand 3 5 4 5 6 2 D1 D2 D3 D4 D5 Ddummy Supply S1 13 (3) 10 (2) 22 29 18 0 5 S2 14 13 16 (4) 21 (2) 10000 0 6 S3 3 0(3) 10000 11 (3) 6 (1) 0 7 S4 18 9 19 23 11 (4) 0 4 S5 30 24 34 36 28 (1) 0 (2) 3 Demand 3 5 4 5 6 2 Or π§ β = 276 3) GAMS CODE $title GENERAL MODEL OF TRANSPORTATION PROBLEM OR
© Copyright 2025 Paperzz